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Summary

The digital world has brought with it many different kinds of data of increasing
size and complexity. Indeed, modern devices allow us to easily obtain images
of higher resolution, as well as to collect data on internet searches, healthcare
analytics, social networks, geographic information systems, business informat-
ics, etc. Consequently, the study and treatment of these big data sets is of great
interest and value.

Weighted discrete graphs provide a natural and flexible workspace in which to
represent the data. In this context, a vertex represents a data point and each
edge is weighted according to an appropriately chosen measure of “similarity”
between the corresponding vertices.



Historically, the main tools for the study of graphs came from combinatorial graph
theory. However, following the implementation of the graph Laplacian in the de-
velopment of spectral clustering in the seventies, the theory of partial differential
equations on graphs has obtained important results in this field (see, for exam-
ple, [23], [36] and the references therein). This has prompted a big surge in the
research of partial differential equations on graphs. Moreover, interest has been
further bolstered by the study of problems in image processing. In this area of re-
search, pixels are taken as the vertices and the “similarity” between pixels as the
weights. The way in which these weights are defined depends on the problem at
hand (see, for instance, [26] and [33]).



The aim of this course is to present some PDE problems in the workspace of
random walk spaces, which include particularly discrete weighted graphs, and
different aspects related to the operators involved in such problems. We will
study:

— The total variational flow.
— The eigenvalue problem for the 1-Laplacian.

— ROF models.



Based on [39]:
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José M. Mazon, Marcos Solera Diana, J. Julian Toledo-Melero.
Progress in Nonlinear Differential Equations and Their Applications, Vol. 103, Birkhauser, 2023.
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CHAPTER 1
Random walk spaces
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Ficure 2. Four joined cities and their trains/day (=weights) connections
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Consider a locally finite discrete graph
G = (V(6), E(G)),
where V(G) is the vertex set, E(G) is the edge set.

If x,y € V(G) and there is an edge connecting both vertices we
write (x,y) € E(G), and also x ~ y.

Locally finite graph: every vertex is only contained in a finite number of edges.

— We assign to each edge (x, y) € E(G) a positive weight

ny — WyX

which quantifies the connections, the relations, between vertices.



Such a graph is called a weighted discrete graph.
— We will also write wyy, = 0if (x,y) ¢ E(G).
— There may be loops in the graph: for some x € V(G), wxx > 0.

A finite sequence {x}}_, of vertices of the graph is called a path if
Xje ~ X411 forall k =0,1,...,n— 1.

G = (V(G), E(G)) is said to be connected if, for any two vertices
x,y € V, there is a path connecting x and y, that is, a path {x,};_,
such that x; = x and x, = y.
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The length of a path {x.}}_, is defined as the number n of edges in the path.
If G = (V(G), E(G)) is connected, the graph distance ds(x, y) between any two
distinct vertices x, y is defined as the minimum of the lengths of the paths con-

necting x and y.

This metric is independent of the weights.

It is not necessary for the most part of the course.



— For x € V(G) we define the weight (weighted degree) at x as
dy = Z Wyy = Z WXy
y~X yeV (G
When all the weights are 1, dx COInCIdeS with the degree of the
vertex x in a graph, that is, the number of edges containing x.

— For each x € V(G) we define the following probability measure

Z Wiy Oy

_)/NX

— We also define the foIIowing measure v; on V(G) as

de Ac V(G).

xXeA
This is just an example of random walk space, that we will now define.



1.1. Random walk and random walk space

Let (X, B) be a measurable space.

We may assume that the o-algebra B is countably generated.

DEFINITION 1.1. A random walk on (X, B) is a family of probability
measures m = (my),ex On B such that x — my(B) is a measurable
function on X for each fixed B € B.

If mis a random walk on (X, B) and v is a o-finite measure on X,
then v on X is said to be invariant with respect to the random
walk m if

V(A) = fX my(A)dv(x).
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DEFINITION 1.2. A measurable space (X, B) together with a random
walk m and an invariant measure v with respecto to m is called a
random walk space and denoted by [ X, B, m, v|.

Let us now introduce a stronger concept than invariance.

A o-finite measure v on X is reversible with respect to the random
walk m if, for all (A, B) € B x B, we have the following symmetric

property:
f <(B)du(x) = f (A)du(x),
A

or, equivalently, if, for all bounded measurable function f,

[ ], foendmaneo = [ [ ri.x0dmeiy)dve)
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Note that:

if v is reversible w.r.t. m = it is invariant w.r.t m.

DEFINITION 1.3. We say that a random walk space | X, B, m, v|is a
reversible random walk space if v is reversible with respect to m.

EXAMPLE 1.4. [Weighted discrete graphs] Going back to the weighted
discrete graphs, if we consider o-algebra of all subsets of V(G), we
have that [V (G), B, m®, v¢] is a reversible random walk space.
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EXAMPLE 1.5. [Markov chains] Let K : X x X — R be a Markov
kernel on a countable space X, i.e.,
K(x,y) =20 Vx,yelX, ZK(X,y)zl Vx e X.

yeX
Then, if

mE(A) = > K(x,y), xe X, Ac X
yeA
and B is the o-algebra of all subsets of X, m” is a random walk on

(X, B).

In this ambient space, a measure w on X satisfying

Y w(x)=1 and w(y) = ) m(x)K(x,y) VyeX,
xeX xeX
IS called a stationary probability measure (or steady state) on X.
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Since

7 is a stationary prob. measure < « is and invariant prob. measure w.r..t m¥,

[X, B, M, 7] is a random walk space.

A stationary probability measure = is reversible for K if

K(x,y)m(x) = K(y,x)m(y) for x,y e X.

Note that, given a locally finite weighted discrete graph as in Example

IS a natural definition of a Markov chain on the vertices:

1

Ke(x,y) = d—WXy.

We have that m® and m*¢ define the same random walk.

1.4

. there
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EXAMPLE 1.6. Consider the metric measure space (RV, d, £N), where
d is the Euclidean distance and £/ the Lebesgue measure.

Let J : RN — [0, +oo[ be a measurable, nonnegative and radially
symmetric function verifying §,n J(x)dx = 1.

Let m” be the following random walk on (R", d):
ml(A) = f J(x — y)dy for x e RN and Borel set A =« RV,
A

Therefore, [RN, d, m?, £N] is a reversible (metric) random walk space.

If each individual starting at location x jumps to location y according to the prob-
ability distribution J(x — y), then m/(A) is measuring the proportion of individuals

who started at x and are arriving at A after one jump.
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EXAMPLE 1.7. Given a reversible random walk space X, B, m, v|
and Q € B with v(Q) > 0, let

ml(A) = f dmy(y)+ f dmy(y) | 6x(A) for Ae Bg and x € Q.
A X\Q

Then, [Q, Bg, m*, v|_Q] is a reversible random walk space.

From now on we will work with reversible random walk spaces.



1.2. Some basic operators on random walk spaces

Given a function f : X — R we define its nonlocal gradient
Vf . XxX—->Ras

Vf(x,y):=f(y)—f(x) Vx,yelX.

Given z: X x X — R we define its m-divergence

divjmz : X — R as

1

(divmz) () = 5 fX<z<x,y> ~2(y, x))dmx(y).

13
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DEFINITION 1.8. We define the m-Laplace operator (or m-Laplacian)
as

Bmf(x) = | F)dmuly) = £x) = | (F(y) = FGx)dmuly)

X

Observe that using the averaging operator M,,f(x) :J f(y)dmy(y),
X

In the case of locally finite weighted discrete graph G = (V, E) such
laplacian is a normalized graph Laplacian:
1
Af(x) = — Y wyy(Fly) — f(x)), forxeV.

X_)/NX

See [41) Ollivier].



Observe that

Similarly, for 1 < p < +o0, we can define a m-p-Laplacian:

divm(|VF|P72VF) = ADF.

And also, at least formally, a m-1-Laplacian:

. Vf
divm (W) = Ainf.

On graphs, see also [27, EImoataz, Toutain and Tenbrinck].

15
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PROPOSITION 1.9. (Integration by parts formula) We have that
1
| Foonmgdui) = = [ | IFxy)Velxy)dmly)duin)
X 2 Jx Jx

forf,g e L1(X,v) n L%(X,v).
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PROOF. By the reversibility of v with respect to m,

[ [ reem - gtndmenavt = | | rv)

He

J oo

nce,

H

f(x)(g(y) — g(x))dm(y)dv(x) +

rr

1
2 Jx Jx
1
2

f(x)(g(y) — g(x))dmy(y)dv(x) +
JX JX

- L Lw<x,y>Vg<x,y>dmx<y>du<x>-

l\)ll—‘ l\)ll—l

(&

y))dmy(y)dv(x).

x))dmy(y)dv(x)

F(x)(gly) — g(x))dmy(y)dv(x)

f(y)(g(x) —gly))dm(y)dv(x)
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1.3. The nonlocal perimeter and mean curvature

For A, B € B, we define the m-interaction between A and B as

r\

Lm(A, B) = f dmy(y)dv(x) = L\ my(B)dv(x).

JB
We have that

Lm(A, B) = Lm(B, A).

For a population which is originally distributed according to v and which moves
according to the law provided by the random walk m, L,,(A, B) measures how
many individuals are moving from A to B in one jump. The reversibility of v
with respect to m implies that this is equal to the amount of individuals moving

from B to A in one jump.



19

DEFINITION 1.10. The m-perimeter of E € B is defined by

Pm(E) = Lm(E, X\E) = JE JX\E dmy(y)dv(x).

This notion is measuring the total flux of individuals that cross the “boundary”

(in a very weak sense) of a set in one jump. So, it gives how large is such

“boundary”.

Observe that Py, (E) = Py (X\E), and we have the following recog-
nizable characterisation:

=3, | 1xe0) ~ xetldmyydvi)

1
=3, |, 1xetey)idmaty)dvo
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Moreover, if v(E) < +oo then

(1.1) Pm(E) =v(E) — fE JE dmy(y)dv(x).

For the case of a weighted graph (V(G), E(G)). Given A, B < V(G),
one can find the following definitions:

Cut(A, B) = Z Wxy
xeA,yeB

and the perimeter of aset A< V(G) as
[0A| := Cut(A, A°).

So, we have the same concepts.



For [RN d, m?, N
f f Xe(y) — Xe(x)|[J(x — y)dydx,

coincides with the concept of J-perimeter given in [37] (or [38]),

where you can find:

If Cy:= \on|zn|J(2)dz < 0, then, for Je(x) = #J (%), e >0,
lim C, P . (E) = Per(E),

e—0T

for any bounded set E = R" of finite perimeter.

For E c Q,
P a(E J f IXE(y x)|J(x — y)dydx

= P_J(E) — L (JRN\Q J(x — y)dy) dx.
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EXERCISE 1.11.1f A, B, C € B have pairwise v-null intersections

then
Pn(AuBUC)=Pr(AuB)+ Pr(AuC)+ Pyr(BuC)

—Pm(A) = Pm(B) — Pm(C).

EXERCISE 1.12 (Submodularity). For A, B € B,
Pm(Au B) 4+ Pn(An B) < Pn(A) + Pn(B).



DEFINITION 1.13. Let E € B. For a point x € X we define the
m-meahn curvature of 0E at x as

HAp(x) := my(X\E) — mx(E).

Note that H - (x) is defined for every x € X.
We have that

%gE<X) = _Ham(x\E) (x).

If Jin Example [1.6]is continuous with compact support,
lim CLH™ (x) = (N — 1)Hae(x) for x € OF,

e—07T

for any C2-smooth set E c RV,

23



24

If v(E) < 40,

L%g’,_:(x)du(x) _ L (1 _ 2 L dmx(y)> dv(x) — v(E) — 2 L L dmy(y)dv(x).

hence, having in mind (1.1)), we obtain that

L HI(x)dv(x) = 2Py,(E) — v(E).

EXERCISE 1.14. For [Q, Bo, m*, v[_Q] as in Example (1.7,
[ M (Q\E) — my(E) + me(X\Q) if x € Q\E,

mt?
HiE (x) = 4

| M (Q\E) — my(E) — my(X\Q) if x € E.
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EXERCISE 1.15. Suppose that v is a probability measure. Then, for
D e B, the following statements are equivalent

() AmXp = 0 v-a.e.

(i) Pm(D) = 0.

1

(i) D

JD HIp(x)dv(x) = —1.
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1.4. m-Connectedness

DEFINITION 1.16. We say that [ X, B, m, v| is m-connected if,
for every D € B with v(D) > 0 and v-a.e. x € X,

Q0
> m(D) > 0.
n=1

The (fundamental) idea in that concept is that all parts of the space
can be reached after a certain number of jumps, no matter what
the starting point (except for, at most, a v-null set of points).

The following result gives a characterization of m-connectedness in
terms of the m-interaction between sets.
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PROPOSITION 1.17. The following statements are equivalent:
(i) | X, B, m, v|is m-connected.
(i) If A, B € B satisfy Au B = X and Lnh,(A, B) = 0, then either

v(A)=0orv(B) =0.

This result justifies the choice of the terminology used since the
characterisation of m-connectedness given is in some way remi-
niscent of the definition of a connected topological space.
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We can also speak about m-connectedness for a subset. Let Q2 € B
with v(Q2) > 0, and let Bg, be the following o-algebra

Bqg:={BeB: Bc},

we say that Q2 is m-connected (with respect to v) if L (A, B) > 0 for

every pair of non-v-null sets A, B € Bg such that A u B = Q. That
IS,

(2 is m-connected < [, Bq, m? vl Q] is m*?-connected.
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EXERCISE 1.18. Suppose that v is a probability measure. Then, the
following statements are equivalent:

(i) [X, B, m,v] is m-connected.

(i) A, is ergodic (A,,f =0 v-a.e. = f is a constant v-a.e.).
And also, they are equivalent to:

(iii) Forevery D e B, A, Xp = 0v-a.e. = v(D) =0o0rv(D) = 1.
(iv) Forevery De B,0 < v(D) < 1= P,(D) > 0.

(v) For every D € B,

1

O0<v(D)<1= J(D) JD HIH(x)dv(x) > —1.
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1.5. Poincare type inequalities

Like in the local case, Poincaré type inequalities play a very impor-
tant role in this framework:

— to obtain results on the rates of convergence of the heat flow or
the total variation flow for example;

— to prove existence of solutions to some pde type problems.

— Let | X, B, m, v| be a reversible random walk space,
with v a probability measure. —
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1.5.1. Global Poincare type inequalities.

We define the (nonlocal Dirichlet) energy functional
Hm : L2(X, v) — [0, +0) by
1

Honf) = [ (F0) = Fly)Pdms(y)dv )

Integrating by parts (and using the reversibility of v with respect to m),

Ho(F) — —% L £ A (x) ()

We say that | X, B, m, v| satisfies a Poincare inequality if there exists
A > 0 such that

AHfH%Q(X’U) < Hm(f) forall f e L?(X,v) with JX fdv = 0.
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If we denote the mean value of f € L?(X, v) (that is, the expected value of f) with
respect to v by v(f):

() = | Fldvx) = E.(F)
and its variance with respect to v Igy
Var, () i | (£(x) = ()Pl
then [ X, B, m, v] satisfies a Poincarginequality iff
(1.2) Mar, (f) < Hn(f) forall fe L2(X,v),
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The spectral gap of the Laplace operator is defined as
gap(—Ap) = inf{27-£m(f) NFll2gx) = 1 v(F) = o}.

Then, if gap(—A,,) > 0 we have that [X, B, m, v] satisfies a Poincaré inequality

with 2gap(—A.,) being the best constant in such inequality.

We have that, gap(—Am) = mino(—Ap,), when —Ap, is restricted to
H(X, v):={fe€ L2(X,v) :v(f) = 0}, and gap(—Ap) € [0, 2]. Then:
gap(—Am) >0 < 0¢ o(—Am).

PROPOSITION 1.19. If — A, Is the sum of an invertible and a com-
pact operator in H( X, v), then

gap(—Ap) > 0.
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COROLLARY 1.20. Consequently, if the averaging operator My, is
compact in H(X, v) then gap(—Apn) > 0.

If G = (V(G), E(G)) is a finite connected weighted discrete graph
then M_ is compact and, consequently, gap(—AS,) > 0.

Let Q be a bounded domain in RN and let J be a kernel such that
J e C(RN R) is nonnegative and radially symmetric, with J(0) > 0
and v J(x)dx = 1. Consider the reversible metric random walk
space [Q, Bg, m*, £N] as defined in Example 1.7, Then, —A g
IS the sum of an invertible and a compact operator:

~Baaf(x) = [ Jx=)dyf() = | Fdx=y)dy, xe9
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The metric random walk space associated to the locally finite weighted
discrete graph G with vertex set V(G) := {x3,x3,%5...,Xxn, ...} and

weights

1 1 1
Wx3nx3ne1 = 3 Wxsni1.3n12 = 50 Wx3pio,x3p43 = 30
n n n

for n > 1, and Wy x; = 0 otherwise, does not satisfy a Poincaré
inequality.
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If gap(—Am) > 0, then Ay, is ergodic, but the above example shows
that the reverse implication does not hold in general.

PROPOSITION 1.21. If | X, B, m,v| satisfies a Poincaré inequality,
then A, is ergodic (equivalently, | X, B, m, v| is m-connected).

PROOF. Let f € D(A,,) such that A,,f = 0 v-a.e. Then,

1

Hn(f) = ~5 JX f(x)Anf(x)dv(x) =0

and, therefore, if [ X, B, m, v| satisfies a Poincaré inequality, we have that

Var,(f) = L(f(x) —v(f))?dr(x) =0
thus f is v-a.e. a constant:
f(x) = J f(x)dv(x) forv-a.e. x € X. ]
X
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In the case of Riemannian manifolds and Markov diffusion semigroups, a usual
condition required to obtain a Poincaré inequality is the positivity of the Ricci cur-
vature of the underlying space, whose meaning is that “small balls are closer,
in the 1-Wasserstein distance, than their centers are” (see [9, Bakry, Gentil,
Ledoux], [43, von Reness, Sturm], [46, Villani]).

When the space under consideration is discrete, for instance, in the case of a
graph, that concept is not as clearly applicable as in the continuous setting.

Nevertheless, in the discrete case there is a well suited concept of curvature
introduced by Y. Ollivier in [41], coarse Ricci curvature, whose positivity ensures
that a Poincaré inequality holds, in this case the balls are substitute by the mea-
sures my.
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DEFINITION 1.22. Given random walk m on a Polish metric space
(X, d) such that each measure my has finite first moment, for x, y €
X, x # y, the Ollivier-Ricci curvature (or coarse Ricci curvature) of
| X,d, m| along (x,y) is

Wld(mx, my )

d(x,y)
The Ollivier-Ricci curvature of | X, d, m| is

Km(x,y) :=1—

Km:= inf km(x,y).
x,yeX

XF#Yy

m, has finite first moment if for some (then, for any) y, € X, we have that
\x d(y, yo)dmy(y) < 4.

W¢ (m,, m,) is the 1-Wasserstein distance between m, and m,.
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THEOREM 1.23. [41, Ollivier] Let | X, d, m,v| be a reversible metric
random walk space, with | X, d, m| as in the above definition (v a
probability measure). Suppose that

o= J J J d(y, z)*dmy(y)dm,(z)dv(x) < +oo0.
X JIX JIX
If the Ollivier-Ricci curvature of | X, d, m|, km, is positive, then

Km < gap(_Am)-






CHAPTER 2
The total variation flow in random walk spaces

The total variation flow has remained one of the most popular tools in Image
Processing since its introduction as a means of solving the denoising problem
by Rudin, Osher and Fatemi [44].

But also for nonlocal models with neighbourhood filters ([15, Buades, Coll, Morel].

And for models on weighted graphs ([26, Elmoataz, Lezoray, Bougleux], [35,
Lozes, Elmoataz, Lézoray]).

Therefore, the study of the 1-Laplacian operator and the total variation flow in

random walk spaces has a potentially broad scope of application.

41
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— Let [ X, B, m, v] be a reversible random walk space.

2.1. The m-total variation

We define the space of nonlocal bounded variation functions as:
BV,(X,v) = {u : X - R measurable : f f lu(y) — u(x)|dmy(y)dv(x) < oo} .
X JX

Moreover, the m-total variation of a function v € BV (X,v) is
defined by

TVin(u JJ| x)|dmyx(y)dv(x).

REMARK 2.1. With this definition, we have that
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The space BV,,(X, v) could be seen as the nonlocal counterpart of classical local
bounded variation spaces (BV-spaces). However, although they represent anal-
ogous concepts in different settings, the local classical BV-spaces and the nonlo-
cal BV-spaces are of a different nature. For example, L'(X,v) < BV,,(X,v) (and
TVin(u) < ||luf;1(x,)) in contrast with classical local bounded variation spaces that

are, by definition, contained in L!.

For the random walk space associated to a weighted graph,

Vs =5 3 3 woluly) — u(x)]

XEV( ) Y ~X
which coincides with the anisotropic total variation defined in [31,
van Gennip, Guillen, Osting, Bertozzi].
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We have a coarea formula relating the m-total variation of a func-
tion v with the m-perimeter of its superlevel sets,

Et(u) :={xe X :u(x)> t}.
THEOREM 2.2 (Coarea formula). For u e BViu(X, v),

+a0
TV (1) — f Po(Es(u)) dt.

— Qo0
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PROOF. Let u € BV,,(X,v). Since

+00 0
U(X) = f XEt(u)(X) dt — J (1 — XEt(u)(X)) dt Vxe X,
0 —o0
we have v
uly) = ul) = | Xeqy) - Xew()dt xyeX

Moreover, since u(y) > u(x) implies Xg,.,)(y) = Xe,u)(x), We obtain that
+00

lu(y) — u(x)| = J XE () (V) — XE () (X)] dt.

—Q0

Therefore, we get (using Tonelli-Hobson’s Theorem)

TValu) =5 | | luty) = wtldm.(y)du(
_ %X ;X ( LZO XE(u)(Y) — XE(u)(X)|d t) dmy(y)dv(x)
- (% L L XE () (V) — XE(u)(X) dme/)dV(X)) dt
[ PuEw)at -
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Set XZ(X,v) :={ze (X x X,v®@my) :divnz € L*(X,v)}.

We can characterize the m-total variation and the m-perimeter using the
m-divergence operator as in the local case ([5, Ambrosio, Fusco, Pallara]).

PROPOSITION 2.3. For u € BV,,(X,v) n L?(X,v), we have

TVn(u) = sup {JX u(x)(divmz) (x)dv(x) : z€ X5(X,v), 2] 12xxxvomy) < 1} .

In particular, for any E € B with v(E) < oo, we have

P.(E) = sup {L(divmz)(x)du(x) L Z€E X,2n(X, V), HZHLOO(XxX,u®mx) < 1} .

Green formula:

: 1
fx u(x)(divmz)(x)dv(x) = - JX fx Vu(x,y)z(x,y)dm,(y)dv(x).
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2.2. The m-1-Laplacian

DEFINITION 2.4. We define in L?(X, v) x L?(X, v) the multivalued operator A7 by:
(u, v) € AT if there exists there exists g € L™ (X x X, v ® m,) antisymmetric with
19l Lo(x xx.v@my) < 1 such that

= J d(x,y)dmy(y) forv-a.exe X,
X

and
d(x,y) esign(u(y) —u(x)) for (v ® my)-a.e. (x,y)e X x X.

For weighted finite graphs (Chang in [19] and Hein and Bihler in [32]):
(u,v) e ATG if 3g e L*(V(G) x V(G)) antisymmetric such that |9 2w )xvic) < 1,

= — Z g(x,y)wy, VxeV(G),
er

and
d(x,y) €sign(u(y) — u(x)) for(x,y) e V(G) x V(G).
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We have that v € A7 (v) iff
(1) there exists z € X7,(X, v) with |z] ;o(xxxem,) < 1 such that

v = div,,z

and one of the two following properties:

_J u(x)v(x)du(x) = TVi(u);
X

or
%JX fxVu(x,y)z(x,y)dmx(y)du(x) = TVn(u);

iff
(2) there exists g € L™ (X x X, v ® m,) antisymmetric with |g|.. < 1 such that

v(x) = JX g(x,y)dm,(y) forv-a.e xe X,

- 9(x, y)dmy(y) u(x)dv(x) = TVn(u).
o,
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THEOREM 2.5. —AT{" is maximal monotone with dense domain. In
fact, it an the m-completely accretive operator.

—AT" Is the subdifferential of the m-total variation.

Hence, for the Cauchy problem

rut—A’lnuaO in (0, T) x X,

k u(0,x) = ug(x) xeX

which equation rewrites the formal nonlocal equation

R
8= | a0 xeX e

(2.1)

we have:
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THEOREM 2.6. Forevery uy € L*(X,v) and any T > 0, there exists a
unique solution of the Cauchy Problem (2.1)) in (0, T) in the following
sense: u € WHL(0,T; L%(X,v)), u(0,-) = ugy in L?(X,v), and, for
almostallt € (0, T),

ut(t,-) — Afu(t) 2 0.
Moreover, we have the following contraction and maximum princi-
ple (1 <qg<+x):
[(u(t) = v(t) " lraxw) < (w0 —vo) " rax,y YO<t<T,

for any pair of solutions u and v of problem (2.1) with initial datum
up and vy, respectively.
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Given ug € L%(X, v), we denote the unique solution of Problem (2.1

m
by et ug.

We call the semigroup {etAT}t>o in L°(X,v) the total variational
flowin | X, B, m,v| or the m-total variational flow.
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—Let | X, B, m, v| be areversible random walk space, m-connected,
and v is a probability measure. —

2.3. Asymptotic behaviour

THEOREM 2.7. For ug € L%(X, v),

tA] _
e ~lugdv = | ugdv foreveryt > 0.
X X

THEOREM 2.8. For every ug € L(X, v),

m
lim elA1 upg = f updv.
t—o0 X
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We can specify a rate of convergence of the total variational flow
(etAT)t>0 when a Poincaré type inequality holds.

If [ X, B, m, v| satisfies a (p, 1)-Poincaré inequality, set

TV,
Amp = inf { ()
|ul Lp(x.)

to the best constant in such inequality.

Nulirpen # 0, v(u) — o} |

THEOREM 2.9. If | X, B, m,v| satisfies a (1,1)-Poincare inequality,
then, for any ug € L%(X, v),

1 HUOHi2<X’U)

< Vt > 0.
HLl(X,u) 2Am 1 t

HetAinuo — v(up)

When [ X, B, m, v] satisfies a (2, 1)-Poincaré inequality, the solution
of the total variational flow reaches the steady state in finite time.
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THEOREM 2.10. Suppose that [ X, d, m, v| satisfies a (2, 1)-Poincaré
inequality. Then, for any uy € L%(X, v),

m T
le*A'ug (w0l 20x,) < (luo = v(w0)l2(x,0) ~ Amat)  VE>0

For the extinction time,
T"(ug) := inf {t >0 : eBlyy = V(U())} ,

we have that

. 1
[uo — v (uo)m < T"(u0) < 31— lluo — v(w0) [ 12(x ) -
m,2

where ||f | m.. := inf {HZHLOO(XxX,U@mX) f = divm(z)} |



CHAPTER 3
The eigenvalue problem for the m-1-Laplacian

Further motivation for the study of the 1-Laplacian operator comes
from spectral clustering. Partitioning data into sensible groups is a
fundamental problem in machine learning, computer science, sta-
tistics and science in general. In these fields, it is usual to face
large amounts of empirical data, and getting a first impression of
these data by identifying groups with similar properties has proved
to be very useful.
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One of the most popular approaches to this problem is to find the
best balanced cut of a graph representing the data, such as the
Cheeger ratio cut ([22, Cheeger]) which we will now introduce.

Consider a finite weighted connected graph G = (V, E), where V =
{x1,. .., xn} is the set of vertices (or nodes) and E the set of edges,
which are weighted by a function w;; = w;; > 0, (x;, x;) € E. In this
context, the Cheeger cut value of a partition {S, 5S¢} (5¢ := V\S) of

V is defined as
Cut(S, S9)

min{vol(S), vol(5¢)}’
where Cut(A, B) = ZXI_EAWEB w;; and vol(S) is the volume of S,
defined as vol(S) := >, s dx;, being dy; the weight at the vertex x; .

C(S) :=
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The minimum of such values,

h(G) = gnclv/C(S)

is called the Cheeger constant, and a partition {5, 5S¢} of V is called
a Cheeger cutof G if h(G) = C(9).

The Cheeger minimization problem of computing h(G) is NP-hard
([32, Hein, Buhler], [45, Szlam, Bresson]).

However, h(G) can be approximated by the first positive eigen-
value \; of the —A, thanks to the following Cheeger inequality
([23, Chung]):

A
71 < h(G) < /2)1.

The nonlocal version of the classical Cheeger inequality.
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This motivates the spectral clustering method (see for example [36,
von Luxburg]), which, in its simplest form, thresholds the first posi-
tive eigenvalue of the —A, to get an approximation to the Cheeger
constant and to a Cheeger cuit.

If uis an eigenfunction with eigenvalue X\y(G), then

{{XE V @ u(x) =20}, {xeV : u(x) < 0}}
approximates a Cheeger cut of G.
In order to achieve a better approximation than the one provided by the classical
spectral clustering method, a spectral clustering based on the graph p-Laplacian

was developed in [16, Blhler, Hein], where it is showed that the second eigen-
value of the graph p-Laplacian tends to the Cheeger constant h(G) as p — 1™.
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In [45, Szlam, Bresson] the idea was further developed by directly considering
the variational characterization of the Cheeger constant h(G)

hm(G) = min Tme(u) ,
vell |u — median(u))|;

where (as defined above)

TVoe(u) = 5 O wilu(x) = u)]

ij=1
The subdifferential of the energy functional TV, is —A  ¢.

Using the nonlinear eigenvalue problem

Asign(u) € —Aqu,

the theory of 1-Spectral Clustering is developed by Chang, Shao an Zhang in
[19], [20], [21] and Hein and Buhler in [32].
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3.1. m-Cheeger and m-calibrable Sets

—— Assume that | X, B, m, v| is m-connected. —

Given Q € Bwith 0 < v(Q2) < v(X), the m-Cheeger constant of Q2 is
defined as

(3.1) h'(Q) = inf{

. E € Bo, u(E)>0}.

If E € Bn minimizes (3.1)), then E is said to be an m-Cheeger set
of Q.

1 is said m-calibrable it is an m-Cheeger set of itself, that is, if

) =
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Note that, by (1.1), we have that h{"(2) < 1.

Notation: given Q € B with 0 < v(Q) < v(X), we will denote
_ Pn(@)

v(2)
EXERCISE 3.1. Consider the metric random walk space associated
to a locally finite weighted discrete graph G = (V(G), E(G)) having
more than two vertices and no loops (i.e., wyx = 0 for all x € V).
Then, any subset consisting of two vertices is m®-calibrable.

)\6':
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EXAMPLE 3.2. Let G = (V(G), E(G)) be the finite weighted discrete
graph:

1 2 3 4 5 6 7
If E1 = B(4,3) = {2,3,...,6},
PG (E1) wip + Wey 1

ve(Ey)  dh+ds+dp+ds+ds 4
However, taking £, = B(4,3) = {3,4,5} < Ej,
2 1 2 2 1 2
® ® @ @ @ ® ®
1 2 3 4 5 6 7

we have
P c(E2)  wyz+wss 1

ve(Ep)  d3tdy+ds 5
Consequently, the ball B(4,3) is not m®-calibrable.
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EXAMPLE 3.3. Let G = (V(G), E(G)) be the finite weighted discrete
graph, where V(G) = {xg, x1, - - -, Xp...}:

P (D
If Q= {x1,x0, x3...}, then 12(’%53)) > 0 for every D < Q with v (D) >

0 but h{"(©2) = 0. Therefore, Q2 has no m-Cheeger set.

For [RV, d, m?, £N], the concepts of m-Cheeger set and m-calibrable
set coincide with the concepts of J-Cheeger set and J-calibrable
set introduced in [37] (see also [38]), where it is shown that each
ball is a J-calibrable set.
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It is well known (see [28, Fridman, Kawoh]) that, for a bounded

smooth domain Q = RV, the classical Cheeger constant

h1(Q) := inf{PTrE(|E) - EcQ, |E| > 0},

is an optimal Poincaré constant:

( i N—1 \
f |Du| + |u|OVH B

Q qu?(Q) - ue BV(Q), |ufprq)=1¢.

\ y,

h1(Q2) = inf <

A nonlocal version of this result is:
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THEOREM 3.4. LetQ e Bwith0 < v(Q2) < v(X). Then,

( )

TVn(u)
JX u(x)dv(x)

PROOF. Given E € B with v(E) > 0, we have
TVn(XE) _ Prn(E)
IXEll1(x0) - w(E)
Therefore, inf{...} < h{"(Q2). For the opposite inequality we will follow an idea
used in [28]. Given u € L'(X,v)\{0}, with u = 0 in X\Q and v > 0, we have

TV, () — JOJroo P (E(u)) dt = JULOO(X//) Pn(E:(u))

: v(Ed(u))
> hP(Q) j v(Eo(u)) dt = hP(Q) j u(x)d(x)

X
where the first equality follows by the coarea formula (Theorem 2.2) and the last

one by Cavalieri’s Principle. Taking the infimum over u in the above expression
we getinf{...} = h{"(Q). O

'

AT(Q) = inf < cue LYX, v)\{0}, u=0inX\Q, u=0

v(E:(u))dt

+0o0
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THEOREM 3.5. [4, Alter, Caselles, Chambolle] Given a bounded
convex set Q of RN of class C1'1 (|Q| > 0), the following assertions
are equivalent:

(a) P%(‘m _inf {P‘Tgﬂﬂ ECQ,|E| >0, Per(E) < 0}

(b) xq satisfies —A1Xq = AXq, where Aju = div < Du ) ,

Dul
(observe that necessarily A = P %(‘Q) ).
Per(Q
(c) (N — 1)esssupHpq(x) < ert )
x€e02 |Q|

In the following results, we will see that the nonlocal counterparts of some of the
implications in this theorem also hold true in our setting, while others do not.
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The next result is the nonlocal version of the fact that (a) is equivalent to (b) in
Theorem 3.5

THEOREM 3.6. Let Q2 € B with0 < v(Q) < v(X). Then, the following assertions
are equivalent:

(i) 2 is m-calibrable,

(il) A\ > 0 and a measurable function T : X — R equal to 1 in Q) such that

AT eATXq inX,
(iii)
APt e AMXq  in X,

for 7 (x) — Xa(x) — }\igmx(ﬂ)xx\g(x).
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That is,

Q2 is m-calibrable < —\d xq +m, () Xx\q € AT"Xq -

Let v(X) < oo. For Q e Bwith 0 < v(Q2) < v(X),
the equation

—Ag Xo € AT'Xq In X
does not hold true.
However, if v(X) = +o0, it may be satisfied:
Consider the metric random walk space [R, d, m?, £1] with
J = 3X[_11]- Then,

ml m/ mJ 1
_A[—l,].]x[_l,]-] S A]_ X[—l,l]’ )\[_1,1] = Z



As a conseguence of Theorem
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3.5, it holds that

a bounded convex set Q « RV is calibrable if, and only if,

_|_
u(t, x) = (1 _ Per@) t) Xq(x) is a solution of the Cauchy problem

]

-
Ut—A1U90

U(O) = XQ-

\

in (0,00) x RV,

That means, a calibrable convex set 2 is that for which the gradient
descent flow associated to the total variation tends to decrease
linearly the height of xq without distortion of its boundary.

We can obtain a similar result in our context if we introduce an
absorption term in the corresponding Cauchy problem.
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The appearance of this term is due to the nonlocality of the diffusion
considered.

Let Q e Bwith 0 < v(Q) < v(X). Q is m-calibrable if, and only if,
u(t)(x) = (1 - 2Tt)" xq(x) is a solution of

{ ur(t)(x) — ATu(t)(x) 3 —=my(Q2) Xx\a(x)X[o,1nm (t) (¢, x) € (0,00) x X,

u(0)(x) = Xa(x), x € X.
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The following result relates the m-calibrability of a set with its m-
mean curvature. This is the nonlocal version of one of the implica-
tions in the equivalence between (a) and (c) in Theorem 3.5,

PROPOSITION 3.7. LetQ e B with0 < v(Q2) < v(X). Then,

. Pm(Q)
Q m-calibrable = v-esssup H(x) < —/———-.
S et =

The converse of Proposition [3.7/is not true in general:

2 2 1 10 1 2 2

° O —0O0—0—<C O °
X1 X2 X3 X4 X5 X6 X7 X3

For Q = {x0, x3, ..., x7}, E = {x4, x5}, we have

1
Hg)Q(X) < 0 Vxe Q, )\61 = 6,

1
p L ——
E 1
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3.2. Eigenvalues of —A["

In this section we introduce the eigenvalues of the operator —A{" and its relation
with the Cheeger minimization problem. For the particular case of finite weighted
discrete graphs where the weights are either 0 or 1, this problem was first stud-
ied by Hein and Buhler ([32]) and a more complete study was subsequently
performed by Chang in [19] (see also [20], [21]).

DEFINITION 3.8. A pair (A, u) € R x L?(X, v) is called an m-eigenpair of the oper-
ator —A7", on X if |uf;1x,) = 1 and there exists § € sign(u) (i.e., {(x) € sign(u(x))
for every x € X) such that

A€ 0Fn(u) = —ATu.

The function v is called an m-eigenfunction of —A{ and A an m-eigenvalue of
—AT" associated to u.
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Observe that, if (X, uv) is an m-eigenpair of —AT", then (X, —u) is also an m-
eigenpair of —A7.

REMARK 3.9. Let (A, u) € R x L*(X,v), |lu];1x,) = 1. We have:
(A, u) is an m-eigenpair of — A7

0

there exists £ € sign(u), and there exists g € L™ (X x X,v ® m,) antisymmetric
with |g|» < 1, such that

_ Lg@(,y) dmy(y) = M(x) forv-a.e. xe X,

and one of this three properties:

- L Lg<x,y>dmx<y> u(x)dv(x) = TVin(u),
or
g(x, ) (uly) — u(x)) = |u(y) — u(x)| for v®@ meace. (x,y) € X x X,

or
A =TVy,(u).
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REMARK 3.10. Note that, since TV;,(u) = X for any m-eigenpair
(A, u) of =A7", then

A =TVw) =5 [ [ 10r) = wGo0ldmsty)du(o

f f V)| + |a())dmy(y)di(x) = Jul1 = 1
thus

Observe that, if a locally finite weighted discrete graph contains a vertex x with
no loop, i.e. w, , = 0, then (1, diX5X> IS an m-eigenpair of —A{"G. Conversely, if 1 is

an m-eigenvalue of —ATG, then there exists at least one vertex in the graph with

no loop (this is an exercise after Proposition 3.19).
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THEOREM 3.11. Assume that | X, B, m, v| is m-connected. Let) € BB
with 0 < v(QQ) < v(X). We have:

(i) If (A, ﬁmxg) Is an m-eigenpair of —AT", then Q) is m-calibrable.
(1) If Q is m-calibrable and

(3.2) my(Q) < Aq forv-a.e. x e X\Q,

then (A7, ﬁxg) is an m-eigenpair of — A

The reverse implications in (i) and (ii) are false in general.
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PROOF. (i): Since (Ag’,ﬁxg) IS an m-eigenpair of —AT", there exists § €

sign(Xq) such that —A\7¢ € A"(Xq). Then, by Theorem
m-calibrable.

(i): If Q is m-calibrable, by Theorem 3.6, we have

—AgT e A'Xq In X
for
)

1 if x € Q,
T (x) =1 1

m
L AQ

T m(Q) ifxe X\Q

3.6

, we have that Q2 is

Now, by (3.2), we have that 7" € sign(Xq) and, consequently, (Agg, ﬁm) IS an

m-eigenpair of —A7.

]
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3.3. The m-Cheeger constant

In 1969, Jeff Cheeger [22] (see also Polya and Szego [42]) proved his famous
iInequality

h2
TM < Mi(Awm),
where M is a compact manifold, A;(Ay) is the first non-trivial eigenvalue of the
Laplace Beltrami operator Ay, on L?(M, vol) and the Cheeger constant hy, is de-

fined as follows:
Area(0S)

min(vol(S), vol(M\S))’
where the infimum runs over all S ¢ M with sufficiently smooth boundary.

h/\// = inf

On graphs, the first results regarding Cheeger’s bound for the first positive eigen-

value of the graph Laplacian are due to Dodziuk [24] and Alon and Milmann [3].

—— Assume that v is a probability measure. —
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DEFINITION 3.12. We define the Cheeger constant of X as

- Pm(D)
hm(X) := inf {min{u(D), v(X\D)}
or, equivalently,

. DebB, O<1/(D)<1},

hm(X) = inf{inz(DD)) . DeB, 0<v(D)< %}

We have that h,,(X) < 1. If hy(X) > 0, it is the best constant in the
Isoperimetric inequality

amin{v(D),1 —v(D)} < Pm(D) forevery D € B.
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Recall that in Section [3.1] we defined the m-Cheeger constant h"(Q) for sets
Qe Bwith0 < v(Q) <v(X).

In this section, the m-Cheeger constant h,,(X) is, instead, a global constant of

the random walk space.

Observe that
hm(X) < h{"(Q) forany Qe B:0 < v(Q) < 1/2;

Pin(€2)

) for some Q € B such that 0 < v(Q2) < 1/2,

then

hm(X) — h?(Q)
and, moreover, 2 is m-calibrable.
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DEFINITION 3.13. Let (X, B,v) be a probability space and let v :
X — R be a measurable function. A real number u is a median
of u (with respect to v) if

N | —

and v({xe X : u(x)>pu}) <

N | —

v({xe X : u(x) <pu}) <

We denote by med, (u) the set of medians of w.

REMARK 3.14. It is easy to see that
pwemed,(u) & —v({u=up}p) <v({u>ph)—v({u<p)) <v({u=p}),
hence
0 € med, () < 3¢ € sign(u) such that Lax)du(x) 0.

Moreover,

(3.3) arg min {fx lu—cldv : ce R} = med, (u).
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The following variational characterization of the Cheeger constant generalizes

the one obtained in [45, Szlam, Bresson] for the particular case of finite graphs.

THEOREM 3.15. The following characterization of the Cheeger con-
stant holds:

hm(X) = inf {Tvm(u) ue LY(X, ),

”HLl(X,u) =1&0¢€ med,/(u)} .
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PROOF. If D € B satisfies 0 < v(D) < 3, then 0 € med, (Xp). Therefore,
1 1
inf{...} < TV, = P.,.(D),
(-1 < TV (5157%0) = 5570

inf{...} < hn,(X).

thus

Take now v € L'(X, v) such that |u;1x,) = 1 and 0 € med, (v). Since 0 € med, (),
by the coarea formula, we obtain that

TV,,(u) :foo Pm(Et(u))dtzf

400

P (Ed(u)) dt + fo P (X\E+(u)) dt
. 0 —w
> hy(X) fo V(Eo(1)) dt + hp(X) f_ V(X\Eo(1) dt
= h,(X) (uX ut(x)dv(x) + JX u(x)du(x))

— hn(X) ] 1330) = ().
Therefore, taking the infimum over u, we get inf{...} > h,(X). ]

400

r\
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Following [23, Chung] and using Theorem 3.15, the Cheeger in-
equality also holds in our context.

THEOREM 3.16. The following Cheeger inequality holds:

(hm(X))?
2

< gap(—Am) < 2hp(X).

COROLLARY 3.17. The following statements are equivalent:
(i) | X, B, m, v| satisfies a Poincare inequality,
(ii) gap(—Am) > 0,

(iii) hm(X) > 0.
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PROOF OF THEOREM [3.16!. Let (f,) = L?(X, v) non null such that v(f,) = 0 and

2 m fn
= |l

And let w, € med,(f,).

We begin with some calculations:

A (F,) = fx L(fn(y) i — (F,(X) — i)’
- f L (o) — tin)* — (Fs(6) — ) — ((Fs(y) = ) — (£o(x) — i) )]

2

= [ [ (= = (B0 =) | [ () = ) = (o)~ ) )’
X JX X JX
2| | () = )" = (60 = 1)) () = ) = (B(0) =) )



Hence,

AHm(fn) =
| [ () == (o) = ) [ | (6l5) =)™ = (500 = ) )
X JX X JX

On the other hand, since v(f,) = 0, we have

L f(x)dv(x) < f (Fo(x) — o) 2du(x) =

X

Therefore,
WH(h) L () = 10" = (o) = ) )" dmi(y)dv(x)
B | (b0 =m0 vl + [ () = ) ) dul)
JX N ((fn()/) — pn) — (falx) — ,U,n)_)z dm,(y)dv(x)
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Now,

ath > min {f, é} for every a, b, c,d e R™,
and
f ((F(x) — ) ") du(x) + J ((F(x) = ) ") dv(x) = J £2(x)dv(x) > 0.
So, V\);e can assume, without Iosg of generality, that ”
J ((F(x) — ) ) dv(x) > 0,
and that ”

AH (o) > JX Jx ((Faly) = )" = (Fal) = Nn>+)2 dmx()/)dl/(X>.
" L ((f(x) = 1)) dv(x)




By the Cauchy-Schwartz inequality, we have

|| 100 = 20 = (0 = )’

dm,(y)dv(x)

- L L (oY) = pn)™ = (Fa(x) — pn) |

x| (Faly) = mn) " + (Fa(x) = pa) | dmi(y)dv(x)

L
2

. ( [ [ ) =) = (00 = )’ dmx<y>du<x>) .

1

2

([ ] 0= w0+ () ) ) dmaty)v) )
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Now, by the invariance of v with respect to m,

| [ () = )"+ (o) = 20)*) ()
X JX

<4 L () — 1)) du(x).

Thus,
f | e )~ () — )*)7] dmyly) ()
Hf HLz Xv) L ((F(x) = ) )° dr(x)
Then, since 0 € med, (((f,, _ p,,,)+)2), by Theorem [3.15, we get
0 < 2 2

and, consequently, taking limits as n — oo, we obtain
(hm(X))* < 2gap(—Apm).
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To prove the other inequality we assume that gap(—A,) > 0. Then from the

Poincaré’s inequality (1.2

for f = Xp,

gap(—An)v(D)(1 — v(D)) < Pn(D) forall DeB, 0 < v(D) < 1.

Then
gap(—Ap)

from this it follows that

min{v(D),1 - v(D)} < P,(D) forallDe B, 0<v(D) <1,

gap(—Ap)

= < h(X). [
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—— Assume that v is a probability measure. —

3.4. More about m-eigenvalues of —A7".

PROPOSITION 3.18. Let (X, u) be an m-eigenpair of —AT". Then,

() =0 < ulisv-a.e. a constant,
and (0,1) and (0, —1) are m-eigenpairs of —A7".

(i) A\ # 0 < there exists & € sign(u) such thatf ¢(x)dv(x) =0
X

< 0 € medy(u).

For finite graphs see Hein and Buhler in [32].
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PROOF OF PROPOSITION[3.18|. (i) If A = 0, we have that TV,,(u) = 0. Then, u
is v-a.e. a constant. Since ||u;1x,) = 1, eitheru =1oru=—1v-a.e.
If uis v-a.e. a constant then TV,,(v) = 0and, A = 0.

(i) (<) It X = 0, by (i), we have that u = 1 or u = —1 v-a.e., and this is in
contradiction with the existence of € sign(u) such that §, {(x)dv(x) = 0.

(=) There exists & € sign(u) and g € L*(X x X, v ® m,) antisymmetric satisfying

ffgxydmx y):

Hence, by the reversibility of v with respect to m, we have

fg )dv(x ffgxy ) dmy(y)dv(x) = 0.

Therefore, since A # 0,

Lg(x)du(x) — 0. ]
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If X # 0is an m-eigenvalue of —A7", then there exists an m-eigenvector
u associated to A such that v(Eg(u)) > 0.

PROPOSITION 3.19. Let (X, u) is an m-eigenpair of — A" with X > 0.
Lett > 0. Ifv(E¢(u)) > 0, then

<A' u(E:<u>>XEf<“>>

Is an m-eigenpair of —A7",

}\rEnt<U) — )\

and E(u) is m-calibrable. Moreover, v(E¢(u)) < 3.



PROOF. First observe that, since 0 € med, (u), v(Eo(u)) < , thus

v(E¢(u)) < % forevery t > 0.

Since (X, u) is an m-eigenpair, there exist £ € sign(v) and
d(x, y) € sign(u(y) — u(x)) antisymmetric such that

- L g(x,y) dmy(y) = M(x) for v-ae. x € X.

93
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Let t > 0 such that v(E;(u)) > 0. Then,
1 if xe E(u) (since u(x) >t > 0and & € sign(u)),
") = { e [—1,1] if x e X\E:(u),
and, therefore, ¢ € sign(X,(,)). On the other hand,
e [-1,1] if x,y € E(u),

—1 if x € E;(u), y € X\E(u) (since u(x) >t

\Y
=
=

g(x,y) = | .
1 if x e X\E;(u), y € E¢:(u) (since u(y) > t = u(x)),

L€ [—1,1] if x,y € X\Et(u),
and, consequently, g(x, y) € sign(Xe,w)(y) — X, () (x)). Therefore, we have that
(A, mxa(u)) IS an m-eigenpair of —A7.

By Theorem 3.11, we have that E;(u) is m-calibrable. ]
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COROLLARY 3.20. If X # 0 is an m-eigenvalue of —A7" then
hm(X) < A

THEOREM 3.21. LetQ € B such that 0 < v(Q) <

N —

(i) IfQ2 and X\2 are m-calibrable, then (Ag, ﬁ)@) IS an m-eigenpair
of —A7".

(i) If hm(X) = Ag, then Q and X\Q are m-calibrable. Therefore,
(Ag , ﬁmxg) is an m-eigenpair of — A
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COROLLARY 3.22. If hm(X) is a positive m-eigenvalue of — A7, then,

for any eigenvector u associated to hy,(X) and any t > 0 such that
v(Et(u)) > 0,

(hm(X), I/(E;l(u))XEt(U)> Is an m-eigenpair of — A",

v(Et(u)) < %, and

Moreover, both E+(u) and X\Et(u) are m-calibrable.
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If Qe B, v(Q) = 3 (thus A\ = 2Pn(Q)), we have that:

—Q and X\(2 are m-calibrable if, and only if, <2Pm(§2), tXq — (2 —t)X X\Q>
is an m-eigenpair of —A7" for any t € [0, 2].

—If hy(X) = 2Pn(Q) then (2Pm(§2), X0 — (2 — t)XX\Q) s an m-
eigenpair of —A7" for all t € [0, 2].
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REMARK 3.23. As a consequence of the above results, for finite

(finite vertices) connected weighted discrete graphs, we have that

: G
hm(X) is the first non-zero eigenvalue of — A{"

(this was already proved in [19, Chang], [20, Chang, Shao, Zhang],
and [32, Hein, Buhler]). To solve the optimal Cheeger cut prob-
lem is enough to find an eigenvector associated v to hy,(X):

{Eo(u), X\Eg(u)} or {Eg(—u), X\Eg(—u)} is a Cheeger cut.

In [39] you can find examples of a connected graph with infinite
points but finite measure for which gap(—Apy) = 0 = hp(X), or for
which hy(X) > 0 is not an m-eigenvalue.



CHAPTER 4
ROF-models in random walk spaces

4.1. Introduction

Let Q be a rectangle in R%. Given a noisy/corrupted image f : Q — R by an
additive noise, the problem of removing the noise to get the “clean” image u is
ill-posed.
To cleanthe image, Rudin, Osher and Fatemi [44] proposed its following (BV, L?)-
decomposition:

f = uy,+ vy,

where

A
[un, vi] = arg min {f Du| + Z|v|5 : f=u+ v} .
(uv)eBV(Q)xL2(Q) LJa 2

wher X\ is a kind of “scale parameter”.

99
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Following Meyer ([40]):

— The first component uy, models the objects that are present in the
image.

— The second component vy contains the textured parts and the
noise.

By tweaking A, we can select the level of detail desired in the re-
constructed image.

If A is too small then the regularization term TV (u) is excessively penalized
and the image is over-smoothed, resulting in a loss of information in the re-
constructed image.

On the other hand, if A is too large then the reconstructed image is under-

regularized and noise is left in the reconstruction.
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In [44], to solve the above ROF-problem, the gradient descent method
was used, which required to solve numerically the parabolic prob-

lem
(up = div (D—Z) —AMu—f) in(0,00) x £,

|Dul
(4.1) \ |BZ| .n=0 on (0, 0) x 09,
u(0,x) = vy(x) in x € Q.

The denoised version of f is approached by the solution of (4.1
as t increases.

The concept of solution for which this problem is well-posed was given in [6,

Andreu, Ballester, Caselles, Mazon] (see also [7, Andreu, Caselles, Mazon]).
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The use of neighborhood filters has led to nonlocal models:

(4.2) min {LXQJ(X — y)|u(x) — u(y)|dxdy + %\u —f|5 : ue LQ(Q)} .

Since an image can be seen as a function on a weighted graph
where the pixels are taken as the vertices,
and the weights are related to the similarity between pixels,

one can also study the ROF-model in a weighted graph
G=(V(G), EG)):

(4.3) UEngiGnVG{ 7 y | u( ‘ny—l—— Z |u( 2d}.

xeV(G) yeV (G er
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— Let [X, B, m,v| be a reversible random walk space with v a
probability measure. —

4.2. The m-ROF model with L2-fidelity term

Problems (4.2) and (4.3) are particular cases of the following
m-ROF-model in [ X, B, m, v|:

o 3, [ 1900 sbotamian) + 3 [ a0 e .

or

. A
(4.4) min {TVm(u) + §Hu — inQ(X’V) - ue L?(X, 1/)} ,

for f € L%(X,v).



104

THEOREM 4.1. Forany f € L?>(X,v) and \ > 0, there exists a unique
minimizer uy of problem (4.4). Moreover, uy, is the unique solution
of the problem

(4.5) AMu—f)e Af(u).

PROOF. Set
A
Gm(u, F,A) := TVip(u) + EHU — fliax,) ue LX)

Let f € L%(X,v) and let {u,}n = L?(X, v) be a minimizing sequence of problem
4.4), 1.e.,

o = inf {Gpn(u, £, ) : uwe L*(X,v)} = lim Gp(un £, N).

n—ao0

Junl220y < 2 (l1tn = F22x0) + 122000y ) < ( Gt fA)Hf\LzXV).
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we have that {u,},.n is bounded in L?(X,v) and we can assume that, up to a
subsequence,

u, — uy  weakly in L*(X, v).
Therefore, by lower semi-continuity with respect to the weak convergence in
L%(X,v), we have that

Gm(uy, f,N) < liminf G, (up, F, ) = o,

hence uy is a minimizer of problem (4.4). The uniqueness of the minimizer fol-
lows from the strict convexity of | - Hfz(x ) and the convexity of TV,,.

Since uy, is a minimizer of problem (4.4), we have that 0 € 0G,,(uy, f, X). Now, if
®(u) == 3|u— f72x,» then, by [14, Brezis] we have that

0Gm(u, f,\) = 0T Vy(u) + 09 (u),

thus
0€ 0Gm(uy, f,N) = 0TVy(uy) + AMuy — ),
which yields (4.5). =
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The m-ROF-model leads to the following (BV, L?)-decomposition:

.
f=u>\—|—v>\,

(uy, vy] = arg min {TVm(u) + éHVHiQ(X ) f=u+ v} .
(u)el2(X.0)x L2(X,v) 2 ’

\

We have that
vy = divm(z), z€ L (X x X, v ® my),

[vallm,« < 3 and
AJ V)\U)\du = TVm(uA),
X
where

: : 2
g lme = inf {12 (x X my) © & = divm(2) }, & € L2(X,0).
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Multiscale decomposition:

We have that

1
[flms<5 = u=0

A

So, for continuing the cleaning by using v, as a image to clean, we

need to use .

)\2 > :
[valm,
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PROPOSITION 4.2. Let f € L?(X,v). If uy € L?>(X,v) is the unique
minimizer of problem (4.4) then

fX Uy (x)du(x) = fx f(x)dv(x).

PROPOSITION 4.3 (Maximum Principle). Let fi, f, € L*(X,v). If
[ui x, vi 2] is the (BV, L?)-decomposition of f;, i = 1,2, then

[(urn = w2 ) 2ix,) < (A= 2) 7l 20x 1)
In particular, for c, C € R, ifc < f < C v-a.e., and [uy, vy]| is the
(BV, L?)-decomposition of f, then

c<u<C v-ae.
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4.2.1. The Gradient Descent Method. Consider the following
Cauchy problem:

vi € A'v(t) = A(v(t) —f) In(0,T) x X
v(0, x) = vp(x) in x e X,

\

THEOREM 4.4. Such problem has a solution, that preserves the
mass, and

— Mt

(46) HV(t) — u>\HL2(X,I/) < HVO - u>\HL2(X,I/) e fOI’ a” t 2 O,

where uy, is the unique minimizer of problem (4.4)) for such f.
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PROOF. We have
vi + A(v(t) — ) e A(v(t)),

and, by Theorem 4.1],

AMuy — ) e A (wy).

Now, since —A" is a monotone operator in L?(X, v), we get

L(v(t) — ) (—ve = A(v(t) = ) = (=A(ur — f))dv = 0,
from where it follows that

st | V(O = wdr £ | (v(6) = w)aw <0

Then, integrating this ordinary differential inequality, we obtain (4.6).
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— Let [X, B, m,v| be a reversible random walk space with v a
probability measure. —

4.3. The m-ROF-model with L1-fidelity term

In this section we will study the m-ROF-model with L!-fidelity term,
that is, given f e L1(X,v) and X > 0, we will study

min{TVm(u) +>\JX|U— fldv : ue LY(X, u)}.

See Alliney [1, 2], Chan, Esedoglu and Nikolova [17, 18] for the local problem.

The resulting (BV, L!)-decomposition differs from the (BV, L2)-one in several im-
portant aspects, for example, the (BV, L!)-decomposition is contrast invariant

([17]), as opposed to the (BV, L?)-decomposition.
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We denote
Em(u, fLN) :=TVn(u) + )\f lu— fldv, uelY(X v).
X

And the set of minimizers of £, (-, f, X\) by M(f, )):

M(f, ) = {u e LY(X,v) : Em(u, f, ) = UeLilr?;( ) Em(u, f, }\)} .

This set can have several elements, it iIs convex and closed In
LL(X, v).



113

In the local case, for every datum in L! a minimizer can be found
via the direct method of the calculus of variations.

However, in our context, we do not have sufficient compactness
properties in order to apply this method.

To prove that M(f, \) # ¢ for every f e L1(X, v) we study the geo-
metric problem associated to the (BV, L1)-decomposition (which is
addressed in the next section).
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PROPOSITION 4.5 (Maximum principle). Let f € L1(X,v), X > 0 and
c,CeR, and assume thatc < f < C v-a.e. Then,

inf gm(u, f, )\) — |nf gm(u, f, )\)
vell(X ) ue L3(X,v)
c<u<C

and, for any ue M(f, \),

c<u<(C v-a.e.

THEOREM 4.6 (Euler-Lagrange equation). Let f € L%(X,v), A > 0
and uy € L%(X,v). Then, uy € M(f,)\) if, and only if there exists
¢ € sign(uy, — f) such that

)\E € Ain(u)\).
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EXERCISE 4.7 (Contrast invariance). Let f € L%(X,v), A > 0 and
T : R — R a nondecreasing function. If uy € M(f, X), then T(uy) €
M(T(f), \).
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4.3.1. The Geometric Problem.

Given F e Band X\ > 0,
EC(A F ) :=Em(Xa XF, \), A€B,

that is
EC(A, F,\) = Pm(A) + AW(AAF).

THEOREM 4.8. Let u, f € L1(X,v) and X > 0, then
+ 00

Emlu, f, ) = f G (E,(u), E+(f), \)dt.

— 00

ForQ e B,

1
£t X \) :fo £6(E,(u), Q, N)dt.



THEOREM 4.9. Let F € B be a non-v-null set and A > 0.
(i) There exists a minimizer uy of Em(-, XF, A).

(i) For a.e. t €0, 1[, E+(uy) is @ minimizer of ES(-, F, \), and
Em(ux XF,A) = Ep(Ee(uy), F ).

117
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PROOF. Since xr € L*(X,v), by the direct method of the calculus of varia-
tions, we have that there exists u, such that

gm(U)\, XF, )\) = ue{rl](i)r; ) Sm(u, XF, >\)

Indeed, by Proposition 4.5, there exists a minimizing sequence u, with 0 < u, <
1, hence, bounded in L?(X, v). Then, by using Mazur's Lemma and the convexity
of £,(., Xr, ), we get a minimizing sequence strongly convergent to some u,, in
L%(X, v). Now, by the lower semi-continuity of £,,(., Xr, ) w.r.t. L}(X,v), we have
that uy is a minimizer.

Now, by Theorem 4.8,

fol ES(Er(uy), F,N)dt = En(un, Xk, A) < inf Em(Xa, XF, ) = j\ggg,ﬁ(/\, F. ),
hence, for a.e. t €0, 1],
ES(Ei(wy), FA) = inf ES(A, F, N,
which concludes the proof. ]
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Adapting the ideas given in [48, Yin, Golfarb, Osher] for the local
case, and thanks to the submodularity of the m-perimeter:

PROPOSITION 4.10. Let F1, F € B, F{ < Fy, and X\ > 0. Suppose
that A;, Ay € B are minimizers of £S(-, F1, \) and ES(-, Fa, \), re-
spectively. Then, A1 n Ay and Ay U Ay minimize ES(-, F1, \) and
ES (-, Fy, \), respectively.

THEOREM 4.11. Given f € L1(X,v) and A > 0, there exists a func-
tion u e L1(X, v) such that

EC(Ev(u), E+(F), ) :/i\ngg,ﬁi(A, E«(f),\) VteR,

and it is a minimizer of the variational problem

min  Em(u, f, N).
uel}(X,v)
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In the local case ([25, Duval, Aujol, Gousseau]) at points where the boundary of
a minimizer E of the geometric problem for datum F < R? and fidelity parameter
X does not coincide with the boundary of F, the mean curvature of 0E is +).

There is a nonlocal counterpart of this fact where, the nonlocal character of the
problem gives rise to a nontrivial extension. We state it for weighted graphs

without loops:

Let A\ > 0and F € Bwith 0 < v(F) < 1, and let E € B be a minimizer of £(-, F, \).
Then:

max{ sup Hgf(x) sup (Hgf(x))} <A< min{ inf (—HS}S(X)) , inf ’ngEG(X)}

xeFnE x¢FUE xeE\F xeF\E
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4.3.2. Thresholding parameters.

In the local case it is well known ([17, Chan, Esedoglu]) that for
f = XB,(0) the solution uy, of the problem is given by:

(i) ux = X,(0) if A > 2
(i) ux = cXp, (o) With 0 < c < 1if X = £,

(i) uy = 0if 0 < X < 2, that is, it suddenly vanishes.

The thresholding property for a set in R? implies (a) in Theorem 3.5, and both

properties are equivalent for convex sets ([29, Duval, Aujol, Gousseau]).

We now see thresholding properties in the nonlocal case.
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LEMMA 4.12. ForQQ e Band )\ > 0,
uy € M(XQ,)\) < 1—uy € M(XX\Q,)\).

LEMMA 4.13. Let f € LY(X,v) and Xy > 0.

(i) If f € M(f, \o) then
{f} = M(f,\) YA > )Xo

(ii) If f € L*(X,v) and a constant c € M(f, \) then c € med, (f),
med, (f) < M(f, Xg),

and
med,(f) = M(f,\) V0 < X < Xo.

(iif) Let \g < A1. Ifue M(f, Ag) n M(f, A1) then ue M(f, X\) for every Ay < A < 1.
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PROOF. (i): Take X > X, then, for any v € L(X, v) such that v({u # f}) > 0
we have
En(f, f,0) =TVy(f) =En(f, f, ) < Em(u, L) < Em(u, £, N).

(i)): Since c € M(f, A\p) we have that, by Theorem |4.6|, there exists £ € sign(c —
fyand g € L(X x X, v ® m,) antisymmetric satisfying

J g(x,y)dm(y) = Mé(x) forv-a.e xe X and
X

d(x,y) €sign(0) for (v® my)-a.e. (x,y) e X x X.

J §dv(x /\iof J d(x,y) dmy(y)dv(x) =0,

so that 0 € med, (c — f), which is equivalent to c € med, (f). Now, for A < X, taking
(X, y) =5 2 g(x, y) we obtain that

ce M(f, ).

Then,
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Furthermore, by (3.3), for any other m € med,(f) and any X\ > 0,

E(c,f, N) = )\J lc — fldv = )\f im—fldv =E(m, f, X),
X X

so that
med,(f) < M(f, ), VO <X <o

Now, let m € med,(f), for any constant function k ¢ med,(f), by

that
f|k—f\du>f im — f|du
X X

so k ¢ M(f, ) for every XA > 0.

3.3

we have
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Suppose then that there exists some nonconstant function u, such that v €

M(f, ) for 0 < XA < X Since v is ergodic with respect to m we have that
TV,(u) > 0,thus E(u, f,X) < E(m, f, \) implies tha’[f lu—fldv < f |lm— f], and

X X
therefore

E(u,f. ) = £, f,>\)+(>\0—>\)f u— fldv
< &(m, f,>\)+(>\0—>\)f Im — fldv — E(m, £ \o)

which is a contradiction. Consequently,
med,(f) = M(f,\) Y0 <X < X

(iii) follows easily. []
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PROPOSITION 4.14. Assume that | X, B, m, v| is m-connected.
Let (Ao, ug) be an m-eigenpair of —A7" with Ay > 0. Then,

0 € med,(ug) and

[ {ugt = M(up, N) if A > X,

§ {cug : 0 < c <1} umed,(uy) = M(ug, o)

_medy(ug) = M(up, \) if 0 < X<\
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PROOF. Since (A, up) is an m-eigenpair of —AT with Xy > 0, we have that
0 € med,(up). Furthermore, by the definition of m-eigenpair, we have that

&0 € Sign(U()) such that — Ao&p € AT(U())

Hence, for 0 < ¢ < 1, &£ := —§; € sign(cuy — up) and A& € AT (ug) = Al (cup),
= A

which implies that cuy € M(ug, Ao). Moreover, since TV,,(up)

(see Remark

3.9) and |/ug|/;1(x,) = 1, we have that

g(UO, up, )\0) — )\0 = 5(0, Up, )\0)

Consequently, by Lemma

4.13

, we get the rest of the thesis. []
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PROPOSITION 4.15. Assume that | X, B, m,v| is m-connected. Let Q) € B with
0 < v(Q) < 1. The following statements are equivalent:

(i) Xa € M(Xq, Ad),
(ii) (Ag, ﬁmxg) Is an m-eigenpair (hence 2 is calibrable),

(1li) the following thresholding property holds:
Xo € M(Xa, A) YA=Ad,
0 M(Xq, \) V0 < <A,

(iv) there exists a thresholding parameter \* > 0 such that
Xo € M(Xa,A) V>N

0e M(Xa,A\) VO < X<,
(= X =2J).
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For Q € B, set

A:(Q) = |Ixq — m ) (D) = (x0).
We have that
max{\g, )\gg\ﬂ} < A (9Q).
THEOREM 4.16. Assume that | X, B, m,v| is m-connected and let
(2 € B. There exists \({2) € R,
max{\J, ,\’;\Q} < A(Q) < A (Q)

such that )
{XQ} = M(XQ,A) If > )\(Q),

Xq € M(Xq, A(Q2)),
kXQ¢M(XQ,)\) if0<)\<)\(ﬂ).

A\
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Furthermore,

1 . . .
AQ) = Ag if, and only if, (Ag’ m)@) IS an m-eigenpair,

and

1 . : :
AQ) = Agg\ﬂ if, and only If, ( Q\Q, X Q)x X\Q> IS an m-eigenpair.

We have:
AQ) = sup{Pml(jg(zgz_APg)(E) . EeB, v(QAE) > O} .
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We now provide some results regarding a thresholding parameter under which
the set of minimizers are constant functions.

PROPOSITION 4.17. Let) € B.

(i) If there exists A > 0 such that 0 € M(Xq, \), then there exists \°(Q) with
0 < X%(Q) < h(Q) such that

{ 0¢ M(Xa, ) if A > A0(Q),
0 e M(xa, X(Q)),
(= med,(Xq) = M(Xq, ) for0 < X < X%(Q)).

(i) If there exists A > 0 such that 1 € M(xq, )\), then there exists A\}(Q) with
0 < A(Q) < A(X\Q) such that

{ 1¢ M(Xa, \) if A > AHQ),
1€ M(Xqa, AH(Q)),
(= med,(Xq) = M(Xq, ) for0 < X < X1(Q)).
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We can set A\Y(Q) = 0 if there is no A > 0 such that 0 € M(xq, \),
and \1(Q) = 0 if there is no A > 0 such that 1 € M(xq, ).

Pm(E)
v(Q) —v(QAE)

A(Q) = inf{ - EcB, v(QAE) <1/(Q)}.

PROPOSITION 4.18. Let 0 < v(Q) < 1. If X%(Q) > AT then Q is
m-calibrable.
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The following example proves that when the image is the charac-
teristic function of a set 2, the minimizer does not have be the char-
acteristic function of a set contained in Q.

We will observe how the solutions remain the same between cer-
tain parameters and make sudden transitions at certain values. In
particular, we see how a set may suddenly vanish.

In the continuous setting, when 2 is a bounded convex domain, for almost all
A = 0 there is a unigue minimizer which, moreover, is the characteristic function

of a set contained in Q (see [17, Chan, Esedoglu]).
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EXAMPLE 4.19. Image:

In red the minimizers u, for the indicated parameter .

5 = 6 2 1 3
® ® . . .
X1 X2 X3 X4 Xy
FIGURE 1. X > 1 = X\(Q), M(X2;,3) = {Xq123 + X3y : c€[0,1]}.
C) C) o v .
X1 X2 X3 X4 Xy
FIGURE 2. % <A< %, M(X{Lg}, %) = {X{1,2,3} + Xy 1 CE [0, 1]}.
C) () o o .
X1 X2 X3 X4 Xy
FIGURE 3. % <A< %, M(X{l,z}, %) = {CX{1'2,3'4} . CE [0, 1]}
O o . . .
X1 X2 X3 X4 X5

FIGURE 4. X < £ = X%(Q).
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EXAMPLE 4.20.

(0,0) (0,0)

(A) Q is the set formed by the points inside the shaded region. (B8) The minimizer, E, for % <A< % is the set formed by the points
inside the shaded region.

FIGURE 5. The point (0, 0) is labelled in the graphs, and the adjacent points are represented by dots.
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4.3.3. The Gradient Descent Method. In order to apply this method
one needs to solve the Cauchy problem

o <f ve € AP'v(t) — Asign(v(t) —f) in(0,T)xX

| v(0,x) = vo(x) in X,
that can be rewritten as the following abstract Cauchy problem in
L2(X, v)

(4.8) V(t) + 0Em(u, £, ) (v(t)) 20, v(0) = v
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Let £ be in LY(X,v). Since Em(-, f, \) is convex and lower semi-
continuous, by the theory of maximal monotone operators ([14]),
we have that, for any initial data vy € L%(X, v), problem (4.8) has a
unique strong solution.

THEOREM 4.21. For every vy € L?(X, v) there exists a unique strong
solution of the Cauchy problem (4.7)) in (0, T) forany T > 0. More-
over, we have the following contraction principle in any L9(X, v)—
space, 1 < g < !

[v(t) = w(B)|Laxp) < Vo — wollagx,y YO<t<T,
for any pair of solutions v, w of problem (4.7) with initial datum v
and wy, respectively.
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THEOREM 4.22. Assume that f € L1(X,v). Let vy € L%(X,v) and
v(t) := Ty(t)wy. If the w-limit set

w(vg) := {w e L*(X,v) : It, — +w s.t. lim v (tp) = w}

Is non-empty, then there exists u* € M(f, \) such that

. e a2
tll_)moov(t)—u in L<(X,v).

Proving that the w-limit set w(v) is non-empty is not an easy task here. For
example, one could try to proceed with the usual method of proving that the
resolvent is compact, but this requires the use of regularity results which are dif-
ficult to obtain in our context due to the non-locality of the problem. Nonetheless,
in finite graphs it is trivially true that the w-limit set is non-empty. Consequently,

we have the following result.



139

COROLLARY 4.23. Let[V(G), dg, m®, v¢| be the metric random walk
space associated to a locally finite weighted discrete graph G =
(V(G), E(G)). Suppose that v; is a probability measure. Then,
for every vo € L%(V(G),vg) and for v(t) := Ty(t)w, there exists
u* € M(f, \) such that

im v(t) = u* in L2(V(G),vg).

t—0o0
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