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Summary

The digital world has brought with it many different kinds of data of increasing
size and complexity. Indeed, modern devices allow us to easily obtain images
of higher resolution, as well as to collect data on internet searches, healthcare
analytics, social networks, geographic information systems, business informat-
ics, etc. Consequently, the study and treatment of these big data sets is of great
interest and value.

Weighted discrete graphs provide a natural and flexible workspace in which to
represent the data. In this context, a vertex represents a data point and each
edge is weighted according to an appropriately chosen measure of “similarity”
between the corresponding vertices.



Historically, the main tools for the study of graphs came from combinatorial graph
theory. However, following the implementation of the graph Laplacian in the de-
velopment of spectral clustering in the seventies, the theory of partial differential
equations on graphs has obtained important results in this field (see, for exam-
ple, [23], [36] and the references therein). This has prompted a big surge in the
research of partial differential equations on graphs. Moreover, interest has been
further bolstered by the study of problems in image processing. In this area of re-
search, pixels are taken as the vertices and the “similarity” between pixels as the
weights. The way in which these weights are defined depends on the problem at
hand (see, for instance, [26] and [35]).



The aim of this course is to present some PDE problems in the workspace of
random walk spaces, which include particularly discrete weighted graphs, and
different aspects related to the operators involved in such problems. We will
study:

– The total variational flow.

– The eigenvalue problem for the 1-Laplacian.

– ROF models.
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CHAPTER 1

Random walk spaces

A B

CD

8

2

1

10

FIGURE 1. Four joined cities and their distances d (weight=1/d)
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FIGURE 2. Four joined cities and their trains/day (=weights) connections
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2 1. Random walk spaces

Consider a locally finite discrete graph

G � pV pGq; EpGqq;

where V pGq is the vertex set, EpGq is the edge set.

If x; y P V pGq and there is an edge connecting both vertices we
write px; yq P EpGq, and also x � y .

Locally finite graph: every vertex is only contained in a finite number of edges.

– We assign to each edge px; yq P EpGq a positive weight

wxy � wyx

which quantifies the connections, the relations, between vertices.
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Such a graph is called a weighted discrete graph.

– We will also write wxy � 0 if px; yq R EpGq.

– There may be loops in the graph: for some x P V pGq, wxx ¡ 0.

A finite sequence txkunk�0 of vertices of the graph is called a path if
xk � xk�1 for all k � 0; 1; :::; n � 1.

G � pV pGq; EpGqq is said to be connected if, for any two vertices
x; y P V , there is a path connecting x and y , that is, a path txkunk�0
such that x0 � x and xn � y .



4 1. Random walk spaces

The length of a path txkunk�0 is defined as the number n of edges in the path.

If G � pV pGq; EpGqq is connected, the graph distance dGpx; yq between any two
distinct vertices x; y is defined as the minimum of the lengths of the paths con-
necting x and y .

This metric is independent of the weights.

It is not necessary for the most part of the course.
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– For x P V pGq we define the weight (weighted degree) at x as

dx :�
¸
y�x

wxy �
¸

yPV pGq

wxy :

When all the weights are 1, dx coincides with the degree of the
vertex x in a graph, that is, the number of edges containing x .

– For each x P V pGq we define the following probability measure

mGx :�
1

dx

¸
y�x

wxy ‹y :

– We also define the following measure G on V pGq as

GpAq :�
¸
xPA

dx ; A � V pGq:

This is just an example of random walk space, that we will now define.
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1.1. Random walk and random walk space

Let pX;Bq be a measurable space.
We may assume that the ff-algebra B is countably generated.

DEFINITION 1.1. A random walk on pX;Bq is a family of probability
measures m � pmxqxPX on B such that x ÞÑ mxpBq is a measurable
function on X for each fixed B P B.

If m is a random walk on pX;Bq and  is a ff-finite measure on X,
then  on X is said to be invariant with respect to the random
walk m if

pAq �

»
X
mxpAqdpxq:
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DEFINITION 1.2. A measurable space pX;Bq together with a random
walk m and an invariant measure  with respecto to m is called a
random walk space and denoted by rX;B; m; s.

Let us now introduce a stronger concept than invariance.

A ff-finite measure  on X is reversible with respect to the random
walk m if, for all pA;Bq P B � B, we have the following symmetric
property: »

A
mxpBqdpxq �

»
B
mxpAqdpxq;

or, equivalently, if, for all bounded measurable function f ,»
X

»
X
f px; yqdmxpyqdpxq �

»
X

»
X
f py; xqdmxpyqdpxq:
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Note that:

if  is reversible w.r.t. m ñ it is invariant w.r.t m.

DEFINITION 1.3. We say that a random walk space rX;B; m; s is a
reversible random walk space if  is reversible with respect to m.

EXAMPLE 1.4. [Weighted discrete graphs] Going back to the weighted
discrete graphs, if we consider ff-algebra of all subsets of V pGq, we
have that rV pGq;B; mG; Gs is a reversible random walk space.
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EXAMPLE 1.5. [Markov chains] Let K : X � X Ñ R be a Markov
kernel on a countable space X, i.e.,

Kpx; yq ¥ 0 @x; y P X;
¸
yPX

Kpx; yq � 1 @x P X:

Then, if
mKx pAq :�

¸
yPA

Kpx; yq; x P X; A � X

and B is the ff-algebra of all subsets of X, mK is a random walk on
pX;Bq.

In this ambient space, a measure ı on X satisfying¸
xPX

ıpxq � 1 and ıpyq �
¸
xPX

ıpxqKpx; yq @y P X;

is called a stationary probability measure (or steady state) on X.
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Since

ı is a stationary prob. measure ô ı is and invariant prob. measure w.r..t mK;

rX;B; mK; ıs is a random walk space.

A stationary probability measure ı is reversible for K if

Kpx; yqıpxq � Kpy; xqıpyq for x; y P X:

Note that, given a locally finite weighted discrete graph as in Example 1.4, there
is a natural definition of a Markov chain on the vertices:

KGpx; yq :�
1

dx
wxy :

We have that mG and mKG define the same random walk.
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EXAMPLE 1.6. Consider the metric measure space pRN; d;LNq, where
d is the Euclidean distance and LN the Lebesgue measure.

Let J : RN Ñ r0;�8r be a measurable, nonnegative and radially
symmetric function verifying

³
RN Jpxqdx � 1.

Let mJ be the following random walk on pRN; dq:

mJx pAq :�

»
A
Jpx � yqdy for x P RN and Borel set A � RN:

Therefore, rRN; d;mJ;LNs is a reversible (metric) random walk space.

If each individual starting at location x jumps to location y according to the prob-

ability distribution Jpx � yq, then mJ
xpAq is measuring the proportion of individuals

who started at x and are arriving at A after one jump.
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EXAMPLE 1.7. Given a reversible random walk space rX;B; m; s
and Ω P B with pΩq ¡ 0, let

mΩ
x pAq :�

»
A
dmxpyq�

�»
XzΩ

dmxpyq

�
‹xpAq for A P BΩ and x P Ω:

Then, rΩ;BΩ; m
Ω;  Ωs is a reversible random walk space.

From now on we will work with reversible random walk spaces.
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1.2. Some basic operators on random walk spaces

Given a function f : X Ñ R we define its nonlocal gradient
∇f : X � X Ñ R as

∇f px; yq :� f pyq � f pxq @ x; y P X:

Given z : X � X Ñ R we define its m-divergence
divmz : X Ñ R as

pdivmzqpxq :�
1

2

»
X
pzpx; yq � zpy; xqqdmxpyq:
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DEFINITION 1.8. We define them-Laplace operator (orm-Laplacian)
as

∆mf pxq �

»
X
f pyqdmxpyq � f pxq �

»
X
pf pyq � f pxqqdmxpyq:

Observe that using the averaging operator Mmf pxq �

»
X

f pyqdmxpyq,

∆mf � Mmf � f :

In the case of locally finite weighted discrete graph G � pV; Eq such
laplacian is a normalized graph Laplacian:

∆f pxq �
1

dx

¸
y�x

wxypf pyq � f pxqq; for x P V:

See [41, Ollivier].
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Observe that
∆mf � divmp∇f q:

Similarly, for 1   p   �8, we can define a m-p-Laplacian:

divmp|∇f |p�2∇f q �: ∆mp f :

And also, at least formally, a m-1-Laplacian:

divm

�
∇f
|∇f |



�: ∆m1 f :

On graphs, see also [27, Elmoataz, Toutain and Tenbrinck].
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PROPOSITION 1.9. (Integration by parts formula) We have that»
X
f pxq∆mgpxqdpxq � �

1

2

»
X

»
X
∇f px; yq∇gpx; yqdmxpyqdpxq

for f ; g P L1pX; q X L2pX; q.
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PROOF. By the reversibility of  with respect to m,»
X

»
X

f pxqpgpyq � gpxqqdmxpyqdpxq �

»
X

»
X

f pyqpgpxq � gpyqqdmxpyqdpxq:

Hence,»
X

f pxq∆mgpxqdpxq �

»
X

»
X

f pxqpgpyq � gpxqqdmxpyqdpxq

�
1

2

»
X

»
X

f pxqpgpyq � gpxqqdmxpyqdpxq �
1

2

»
X

»
X

f pxqpgpyq � gpxqqdmxpyqdpxq

�
1

2

»
X

»
X

f pxqpgpyq � gpxqqdmxpyqdpxq �
1

2

»
X

»
X

f pyqpgpxq � gpyqqdmxpyqdpxq

� �
1

2

»
X

»
X

∇f px; yq∇gpx; yqdmxpyqdpxq: □



18 1. Random walk spaces

1.3. The nonlocal perimeter and mean curvature

For A, B P B, we define the m-interaction between A and B as

LmpA;Bq :�

»
A

»
B
dmxpyqdpxq �

»
A
mxpBqdpxq:

We have that
LmpA;Bq � LmpB;Aq:

For a population which is originally distributed according to  and which moves

according to the law provided by the random walk m, LmpA;Bq measures how

many individuals are moving from A to B in one jump. The reversibility of 

with respect to m implies that this is equal to the amount of individuals moving

from B to A in one jump.
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DEFINITION 1.10. The m-perimeter of E P B is defined by

PmpEq :� LmpE;XzEq �

»
E

»
XzE

dmxpyqdpxq:

This notion is measuring the total flux of individuals that cross the “boundary”

(in a very weak sense) of a set in one jump. So, it gives how large is such

“boundary”.

Observe that PmpEq � PmpXzEq, and we have the following recog-
nizable characterisation:

PmpEq �
1

2

»
X

»
X
|fflEpyq � fflEpxq|dmxpyqdpxq

�
1

2

»
X

»
X
|∇fflEpx; yq|dmxpyqdpxq:
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Moreover, if pEq   �8 then

(1.1) PmpEq � pEq �

»
E

»
E
dmxpyqdpxq:

For the case of a weighted graph pV pGq; EpGqq. Given A;B � V pGq,
one can find the following definitions:

CutpA;Bq :�
¸

xPA;yPB

wxy ;

and the perimeter of a set A � V pGq as

|BA| :� CutpA;Acq:

So, we have the same concepts.
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For rRN; d;mJ;LNs

PmJpEq �
1

2

»
RN

»
RN

|fflEpyq � fflEpxq|Jpx � yqdydx;

coincides with the concept of J-perimeter given in [37] (or [38]),
where you can find:

If CJ :�
³
RN |zN|Jpzqdz   �8, then, for J›pxq � 1

›N
J
�
x
›

�
, › ¡ 0,

lim
›Ñ0�

CJ›PmJ›pEq � PerpEq;

for any bounded set E � RN of finite perimeter.

For E � Ω,

PmJ;ΩpEq �
1

2

»
Ω

»
Ω

|fflEpyq � fflEpxq|Jpx � yqdydx

� PmJpEq �

»
E

�»
RNzΩ

Jpx � yqdy



dx:
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EXERCISE 1.11. If A, B, C P B have pairwise -null intersections
then

PmpAY B Y Cq � PmpAY Bq � PmpAY Cq � PmpB Y Cq

�PmpAq � PmpBq � PmpCq:

EXERCISE 1.12 (Submodularity). For A; B P B,

PmpAY Bq � PmpAX Bq ¤ PmpAq � PmpBq:
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DEFINITION 1.13. Let E P B. For a point x P X we define the
m-mean curvature of BE at x as

Hm
BEpxq :� mxpXzEq �mxpEq:

Note that Hm
BEpxq is defined for every x P X.

We have that

Hm
BEpxq � �Hm

BpXzEqpxq:

If J in Example 1.6 is continuous with compact support,

lim
›Ñ0�

CJ›HmJ›
BE pxq � pN � 1qHBEpxq for x P BE;

for any C2-smooth set E � RN.
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If pEq   �8,»
E

Hm
BEpxqdpxq �

»
E

�
1� 2

»
E

dmxpyq



dpxq � pEq � 2

»
E

»
E

dmxpyqdpxq;

hence, having in mind (1.1), we obtain that»
E

Hm
BEpxqdpxq � 2PmpEq � pEq:

EXERCISE 1.14. For rΩ;BΩ; m
Ω;  Ωs as in Example 1.7,

HmΩ

BE pxq �

$'&
'%
mxpΩzEq �mxpEq �mxpXzΩq if x P ΩzE;

mxpΩzEq �mxpEq �mxpXzΩq if x P E:
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EXERCISE 1.15. Suppose that  is a probability measure. Then, for
D P B, the following statements are equivalent

(i) ∆mfflD � 0 -a.e.

(ii) PmpDq � 0.

(iii)
1

pDq

»
D
Hm
BDpxqdpxq � �1.
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1.4. m-Connectedness

DEFINITION 1.16. We say that rX;B; m; s is m-connected if,
for every D P B with pDq ¡ 0 and -a.e. x P X,

8̧

n�1

m�nx pDq ¡ 0:

The (fundamental) idea in that concept is that all parts of the space
can be reached after a certain number of jumps, no matter what
the starting point (except for, at most, a -null set of points).

The following result gives a characterization ofm-connectedness in
terms of the m-interaction between sets.
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PROPOSITION 1.17. The following statements are equivalent:

(i) rX;B; m; s is m-connected.

(ii) If A;B P B satisfy A Y B � X and LmpA;Bq � 0, then either
pAq � 0 or pBq � 0.

This result justifies the choice of the terminology used since the
characterisation of m-connectedness given is in some way remi-
niscent of the definition of a connected topological space.
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We can also speak about m-connectedness for a subset. Let Ω P B
with pΩq ¡ 0, and let BΩ be the following ff-algebra

BΩ :� tB P B : B � Ωu;

we say that Ω is m-connected (with respect to ) if LmpA;Bq ¡ 0 for
every pair of non--null sets A, B P BΩ such that A Y B � Ω. That
is,

Ω is m-connected ô rΩ;BΩ; m
Ω;  Ωs is mΩ-connected.
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EXERCISE 1.18. Suppose that  is a probability measure. Then, the
following statements are equivalent:

(i) rX;B; m; s is m-connected.

(ii) ∆m is ergodic (∆mf � 0 -a.e. ñ f is a constant -a.e.).

And also, they are equivalent to:

(iii) For every D P B, ∆mfflD � 0 -a.e. ñ pDq � 0 or pDq � 1.

(iv) For every D P B, 0   pDq   1ñ PmpDq ¡ 0.

(v) For every D P B,

0   pDq   1 ñ
1

pDq

»
D

Hm
BDpxqdpxq ¡ �1:
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1.5. Poincaré type inequalities

Like in the local case, Poincaré type inequalities play a very impor-
tant role in this framework:

– to obtain results on the rates of convergence of the heat flow or
the total variation flow for example;

– to prove existence of solutions to some pde type problems.

—– Let rX;B; m; s be a reversible random walk space,
with  a probability measure. —–
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1.5.1. Global Poincaré type inequalities.

We define the (nonlocal Dirichlet) energy functional
Hm : L2pX; q Ñ r0;�8q by

Hmpf q :�
1

4

»
X�X

pf pxq � f pyqq2dmxpyqdpxq:

Integrating by parts (and using the reversibility of  with respect to m),

Hmpf q � �
1

2

»
X

f pxq∆mf pxqdpxq:

We say that rX;B; m; s satisfies a Poincaré inequality if there exists
– ¡ 0 such that

–}f }2
L2pX;q

¤ Hmpf q for all f P L2pX; q with
»
X
f d � 0:
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If we denote the mean value of f P L2pX; q (that is, the expected value of f ) with
respect to  by pf q:

pf q :�

»
X

f pxqdpxq � Epf q;

and its variance with respect to  by

Varpf q :�

»
X

pf pxq � pf qq2dpxq;

then rX;B; m; s satisfies a Poincaré inequality iff

(1.2) –Varpf q ¤ Hmpf q for all f P L2pX; q;
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The spectral gap of the Laplace operator is defined as

gapp�∆mq � inf
!
2Hmpf q : }f }L2pX;q � 1; pf q � 0

)
:

Then, if gapp�∆mq ¡ 0 we have that rX;B; m; s satisfies a Poincaré inequality

with 1
2
gapp�∆mq being the best constant in such inequality.

We have that, gapp�∆mq � minffp�∆mq; when �∆m is restricted to
HpX; q :�

 
f P L2pX; q : pf q � 0

(
, and gapp�∆mq P r0; 2s: Then:

gapp�∆mq ¡ 0 ô 0 R ffp�∆mq:

PROPOSITION 1.19. If �∆m is the sum of an invertible and a com-
pact operator in HpX; q, then

gapp�∆mq ¡ 0:



34 1. Random walk spaces

COROLLARY 1.20. Consequently, if the averaging operator Mm is
compact in HpX; q then gapp�∆mq ¡ 0:

If G � pV pGq; EpGqq is a finite connected weighted discrete graph
then MmG is compact and, consequently, gapp�∆Gmq ¡ 0.

Let Ω be a bounded domain in RN and let J be a kernel such that
J P CpRN;Rq is nonnegative and radially symmetric, with Jp0q ¡ 0

and
³
RN Jpxqdx � 1. Consider the reversible metric random walk

space rΩ;BΩ; m
J;Ω;LNs as defined in Example 1.7. Then, �∆mJ;Ω

is the sum of an invertible and a compact operator:

�∆mJ;Ωf pxq �

»
Ω
Jpx � yqdyf pxq �

»
Ω
f pyqJpx � yqdy; x P Ω:
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The metric random walk space associated to the locally finite weighted
discrete graph G with vertex set V pGq :� tx3; x4; x5 : : : ; xn; : : :u and
weights

wx3n;x3n�1 �
1

n3
; wx3n�1;x3n�2 �

1

n2
; wx3n�2;x3n�3 �

1

n3
;

for n ¥ 1, and wxi ;xj � 0 otherwise, does not satisfy a Poincaré
inequality.
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If gapp�∆mq ¡ 0, then ∆m is ergodic, but the above example shows
that the reverse implication does not hold in general.

PROPOSITION 1.21. If rX;B; m; s satisfies a Poincaré inequality,
then ∆m is ergodic (equivalently, rX;B; m; s is m-connected).

PROOF. Let f P Dp∆mq such that ∆mf � 0 -a.e. Then,

Hmpf q � �
1

2

»
X

f pxq∆mf pxqdpxq � 0

and, therefore, if rX;B; m; s satisfies a Poincaré inequality, we have that

Varpf q �

»
X

pf pxq � pf qq2dpxq � 0

thus f is -a.e. a constant:

f pxq �

»
X

f pxqdpxq for -a.e. x P X: □
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In the case of Riemannian manifolds and Markov diffusion semigroups, a usual
condition required to obtain a Poincaré inequality is the positivity of the Ricci cur-
vature of the underlying space, whose meaning is that “small balls are closer,
in the 1-Wasserstein distance, than their centers are” (see [9, Bakry, Gentil,
Ledoux], [43, von Reness, Sturm], [46, Villani]).

When the space under consideration is discrete, for instance, in the case of a
graph, that concept is not as clearly applicable as in the continuous setting.

Nevertheless, in the discrete case there is a well suited concept of curvature
introduced by Y. Ollivier in [41], coarse Ricci curvature, whose positivity ensures
that a Poincaré inequality holds, in this case the balls are substitute by the mea-
sures mx .
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DEFINITION 1.22. Given random walk m on a Polish metric space
pX; dq such that each measure mx has finite first moment, for x; y P
X, x � y , the Ollivier-Ricci curvature (or coarse Ricci curvature) of
rX; d;ms along px; yq is

»mpx; yq :� 1�
W d

1 pmx ; myq

dpx; yq
:

The Ollivier-Ricci curvature of rX; d;ms is

»m :� inf
x; y P X

x � y

»mpx; yq:

mx has finite first moment if for some (then, for any) y0 P X, we have that³
X dpy; y0qdmxpyq   �8.

W d
1 pmx ; myq is the 1-Wasserstein distance between mx and my .
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THEOREM 1.23. [41, Ollivier] Let rX; d;m; s be a reversible metric
random walk space, with rX; d;ms as in the above definition ( a
probability measure). Suppose that

ff :�

»
X

»
X

»
X

dpy; zq2dmxpyqdmxpzqdpxq   �8:

If the Ollivier-Ricci curvature of rX; d;ms, »m, is positive, then

»m ¤ gapp�∆mq:





CHAPTER 2

The total variation flow in random walk spaces

The total variation flow has remained one of the most popular tools in Image
Processing since its introduction as a means of solving the denoising problem
by Rudin, Osher and Fatemi [44].

But also for nonlocal models with neighbourhood filters ([15, Buades, Coll, Morel].

And for models on weighted graphs ([26, Elmoataz, Lezoray, Bougleux], [35,
Lozes, Elmoataz, Lézoray]).

Therefore, the study of the 1-Laplacian operator and the total variation flow in

random walk spaces has a potentially broad scope of application.
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—– Let rX;B; m; s be a reversible random walk space.

2.1. The m-total variation

We define the space of nonlocal bounded variation functions as:

BVmpX; q �

"
u : X Ñ R measurable :

»
X

»
X

|upyq � upxq|dmxpyqdpxq   8

*
:

Moreover, the m-total variation of a function u P BVmpX; q is
defined by

TVmpuq �
1

2

»
X

»
X
|upyq � upxq|dmxpyqdpxq:

REMARK 2.1. With this definition, we have that

PmpEq � TVmpfflEq:
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The space BVmpX; q could be seen as the nonlocal counterpart of classical local

bounded variation spaces (BV-spaces). However, although they represent anal-

ogous concepts in different settings, the local classical BV-spaces and the nonlo-

cal BV-spaces are of a different nature. For example, L1pX; q � BVmpX; q (and

TVmpuq ¤ }u}L1pX;q) in contrast with classical local bounded variation spaces that

are, by definition, contained in L1.

For the random walk space associated to a weighted graph,

TVmGpuq �
1

2

¸
xPV pGq

¸
y�x

wxy |upyq � upxq|;

which coincides with the anisotropic total variation defined in [31,
van Gennip, Guillen, Osting, Bertozzi].
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We have a coarea formula relating the m-total variation of a func-
tion u with the m-perimeter of its superlevel sets,

Etpuq :� tx P X : upxq ¡ tu:

THEOREM 2.2 (Coarea formula). For u P BVmpX; q,

TVmpuq �

» �8
�8

PmpEtpuqq dt:
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PROOF. Let u P BVmpX; q. Since

upxq �

» �8

0

fflEtpuqpxq dt �

» 0

�8

p1� fflEtpuqpxqq dt @x P X;

we have

upyq � upxq �

» �8

�8

fflEtpuqpyq � fflEtpuqpxq dt @x; y P X:

Moreover, since upyq ¥ upxq implies fflEtpuqpyq ¥ fflEtpuqpxq, we obtain that

|upyq � upxq| �

» �8

�8

|fflEtpuqpyq � fflEtpuqpxq| dt:

Therefore, we get (using Tonelli-Hobson’s Theorem)

TVmpuq �
1

2

»
X

»
X

|upyq � upxq|dmxpyqdpxq

�
1

2

»
X

»
X

�» �8

�8

|fflEtpuqpyq � fflEtpuqpxq|dt



dmxpyqdpxq

�

» �8

�8

�
1

2

»
X

»
X

|fflEtpuqpyq � fflEtpuqpxq|dmxpyqdpxq



dt

�

» �8

�8

PmpEtpuqqdt: □
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Set X2
mpX; q :�

 
z P L8pX � X;  bmxq : divmz P L2pX; q

(
:

We can characterize the m-total variation and the m-perimeter using the
m-divergence operator as in the local case ([5, Ambrosio, Fusco, Pallara]).

PROPOSITION 2.3. For u P BVmpX; q X L2pX; q, we have

TVmpuq � sup

"»
X

upxqpdivmzqpxqdpxq : z P X2
mpX; q; }z}L8pX�X;bmxq ¤ 1

*
:

In particular, for any E P B with pEq   8, we have

PmpEq � sup

"»
E

pdivmzqpxqdpxq : z P X2
mpX; q; }z}L8pX�X;bmxq ¤ 1

*
:

Green formula:»
X

upxqpdivmzqpxqdpxq � �
1

2

»
X

»
X

∇upx; yqzpx; yqdmxpyqdpxq:
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2.2. The m-1-Laplacian

DEFINITION 2.4. We define in L2pX; q�L2pX; q the multivalued operator ∆m
1 by:

pu; vq P ∆m
1 if there exists there exists g P L8pX � X;  bmxq antisymmetric with

}g}L8pX�X;bmxq ¤ 1 such that

vpxq �

»
X

gpx; yq dmxpyq for -a.e x P X;

and
gpx; yq P signpupyq � upxqq for p bmxq-a.e. px; yq P X � X:

For weighted finite graphs (Chang in [19] and Hein and Bühler in [32]):
pu; vq P ∆mG

1 if Dg P L8pV pGq � V pGqq antisymmetric such that }g}L8pV pGq�V pGqq ¤ 1,

vpxq �
1

dx

¸

yPV pGq

gpx; yqwxy @ x P V pGq;

and
gpx; yq P signpupyq � upxqq for px; yq P V pGq � V pGq:
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We have that v P ∆m
1 puq iff

(1) there exists z P X2
mpX; q with }z}L8pX�X;bmxq ¤ 1 such that

v � divmz

and one of the two following properties:

�

»
X

upxqvpxqdpxq � TVmpuq;

or
1

2

»
X

»
X

∇upx; yqzpx; yqdmxpyqdpxq � TVmpuq;

iff
(2) there exists g P L8pX � X;  bmxq antisymmetric with }g}8 ¤ 1 such that

vpxq �

»
X

gpx; yq dmxpyq for -a.e x P X;

�

»
X

»
X

gpx; yqdmxpyq upxqdpxq � TVmpuq:
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THEOREM 2.5. �∆m1 is maximal monotone with dense domain. In
fact, it an the m-completely accretive operator.

�∆m
1 is the subdifferential of the m-total variation.

Hence, for the Cauchy problem

(2.1)

$&
%
ut �∆m1 u Q 0 in p0; T q � X;

up0; xq � u0pxq x P X;

which equation rewrites the formal nonlocal equation

utpx; tq �

»
X

upy; tq � upx; tq

|upy; tq � upx; tq|
dmxpyq; x P X; t ¥ 0;

we have:
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THEOREM 2.6. For every u0 P L2pX; q and any T ¡ 0, there exists a
unique solution of the Cauchy Problem (2.1) in p0; T q in the following
sense: u P W 1;1p0; T ;L2pX; qq, up0; �q � u0 in L2pX; q, and, for
almost all t P p0; T q,

utpt; �q �∆m1 uptq Q 0:

Moreover, we have the following contraction and maximum princi-
ple (1 ¤ q ¤ �8):

}puptq � vptqq�}LqpX;q ¤ }pu0 � v0q
�}LqpX;q @ 0   t   T;

for any pair of solutions u and v of problem (2.1) with initial datum
u0 and v0, respectively.
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Given u0 P L2pX; q, we denote the unique solution of Problem (2.1)
by et∆

m
1 u0.

We call the semigroup tet∆
m
1 ut¥0 in L2pX; q the total variational

flow in rX;B; m; s or the m-total variational flow.



52 2. The m-total variation flow

—– Let rX;B; m; s be a reversible random walk space,m-connected,
and  is a probability measure. —–

2.3. Asymptotic behaviour

THEOREM 2.7. For u0 P L2pX; q,»
X
et∆

m
1 u0d �

»
X
u0d for every t ¥ 0:

THEOREM 2.8. For every u0 P L2pX; q,

lim
tÑ8

et∆
m
1 u0 �

»
X
u0d:
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We can specify a rate of convergence of the total variational flow
pet∆

m
1 qt¥0 when a Poincaré type inequality holds.

If rX;B; m; s satisfies a pp; 1q-Poincaré inequality, set

–m;p :� inf

"
TVmpuq

}u}LppX;q
: }u}LppX;q � 0; puq � 0

*
;

to the best constant in such inequality.

THEOREM 2.9. If rX;B; m; s satisfies a p1; 1q-Poincaré inequality,
then, for any u0 P L2pX; q,���et∆m1 u0 � pu0q���

L1pX;q
¤

1

2–m;1

}u0}
2
L2pX;q

t
@t ¡ 0:

When rX;B; m; s satisfies a p2; 1q-Poincaré inequality, the solution
of the total variational flow reaches the steady state in finite time.
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THEOREM 2.10. Suppose that rX; d;m; s satisfies a p2; 1q-Poincaré
inequality. Then, for any u0 P L2pX; q,

}et∆
m
1 u0�pu0q}L2pX;q ¤

�
}u0 � pu0q}L2pX;q � –m;2t

	�
@t ¥ 0:

For the extinction time,

T �pu0q :� inf
!
t ¡ 0 : et∆

m
1 u0 � pu0q

)
;

we have that

}u0 � pu0q}m;� ¤ T �pu0q ¤
1

–m;2
}u0 � pu0q}L2pX;q ;

where }f }m;� :� inf
!
}z}L8pX�X;bmxq : f � divmpzq

)
:



CHAPTER 3

The eigenvalue problem for the m-1-Laplacian

Further motivation for the study of the 1-Laplacian operator comes
from spectral clustering. Partitioning data into sensible groups is a
fundamental problem in machine learning, computer science, sta-
tistics and science in general. In these fields, it is usual to face
large amounts of empirical data, and getting a first impression of
these data by identifying groups with similar properties has proved
to be very useful.
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One of the most popular approaches to this problem is to find the
best balanced cut of a graph representing the data, such as the
Cheeger ratio cut ([22, Cheeger]) which we will now introduce.

Consider a finite weighted connected graph G � pV; Eq, where V �

tx1; : : : ; xnu is the set of vertices (or nodes) and E the set of edges,
which are weighted by a function wj i � wi j ¥ 0, pxi ; xjq P E. In this
context, the Cheeger cut value of a partition tS; Scu (Sc :� V zS) of
V is defined as

CpSq :� CutpS; Scq

mintvolpSq; volpScqu
;

where CutpA;Bq �
°
xiPA;xjPB

wi j and volpSq is the volume of S,
defined as volpSq :�

°
xiPS

dxi , being dxi the weight at the vertex xi .
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The minimum of such values,

hpGq :� min
S�V

CpSq;

is called the Cheeger constant, and a partition tS; Scu of V is called
a Cheeger cut of G if hpGq � CpSq.

The Cheeger minimization problem of computing hpGq is NP-hard
([32, Hein, Bühler], [45, Szlam, Bresson]).

However, hpGq can be approximated by the first positive eigen-
value –1 of the �∆m thanks to the following Cheeger inequality
([23, Chung]):

–1
2
¤ hpGq ¤

a
2–1:

The nonlocal version of the classical Cheeger inequality.
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This motivates the spectral clustering method (see for example [36,
von Luxburg]), which, in its simplest form, thresholds the first posi-
tive eigenvalue of the �∆m to get an approximation to the Cheeger
constant and to a Cheeger cut.

If u is an eigenfunction with eigenvalue –2pGq, then!
tx P V : upxq ¥ 0u; tx P V : upxq   0u

)
approximates a Cheeger cut of G.

In order to achieve a better approximation than the one provided by the classical
spectral clustering method, a spectral clustering based on the graph p-Laplacian
was developed in [16, Bühler, Hein], where it is showed that the second eigen-
value of the graph p-Laplacian tends to the Cheeger constant hpGq as p Ñ 1�.
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In [45, Szlam, Bresson] the idea was further developed by directly considering
the variational characterization of the Cheeger constant hpGq

hmpGq � min
uPL1

TVmGpuq

}u �medianpuqq}1
;

where (as defined above)

TVmGpuq :�
1

2

ņ

i ;j�1

wi j |upxiq � upxjq|:

The subdifferential of the energy functional TVm is �∆mG.

Using the nonlinear eigenvalue problem

– signpuq P �∆1u;

the theory of 1-Spectral Clustering is developed by Chang, Shao an Zhang in

[19], [20], [21] and Hein and Bühler in [32].
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3.1. m-Cheeger and m-calibrable Sets

—– Assume that rX;B; m; s is m-connected. —–

Given Ω P B with 0   pΩq   pXq, the m-Cheeger constant of Ω is
defined as

(3.1) hm1 pΩq :� inf

"
PmpEq

pEq
: E P BΩ; pEq ¡ 0

*
:

If E P BΩ minimizes (3.1), then E is said to be an m-Cheeger set
of Ω.
Ω is said m-calibrable it is an m-Cheeger set of itself, that is, if

hm1 pΩq �
PmpΩq

pΩq
:
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Note that, by (1.1), we have that hm1 pΩq ¤ 1.

Notation: given Ω P B with 0   pΩq   pXq, we will denote

–mΩ :�
PmpΩq

pΩq
:

EXERCISE 3.1. Consider the metric random walk space associated
to a locally finite weighted discrete graph G � pV pGq; EpGqq having
more than two vertices and no loops (i.e., wxx � 0 for all x P V ).
Then, any subset consisting of two vertices is mG-calibrable.
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EXAMPLE 3.2. Let G � pV pGq; EpGqq be the finite weighted discrete
graph:

1 2

2

3

1

4

2

5

2 1

6

2

7

If E1 � Bp4; 52q � t2; 3; : : : ; 6u,
PmGpE1q

GpE1q
�

w12 � w67
d2 � d3 � d4 � d5 � d6

�
1

4
:

However, taking E2 � Bp4; 32q � t3; 4; 5u � E1,

1 2

2

3

1

4

2

5

2 1

6

2

7

we have
PmGpE2q

GpE2q
�

w23 � w56
d3 � d4 � d5

�
1

5
:

Consequently, the ball Bp4; 52q is not mG-calibrable.
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EXAMPLE 3.3. Let G � pV pGq; EpGqq be the finite weighted discrete
graph, where V pGq � tx0; x1; : : : ; xn : : :u:

x0

1
20

x1

1
30

x2

1
2

x3

1
3

x4

1
22

x5

1
32

x6

If Ω :� tx1; x2; x3 : : :u, then
P
mG

pDq

GpDq
¡ 0 for every D � Ω with GpDq ¡

0 but hm1 pΩq � 0. Therefore, Ω has no m-Cheeger set.

For rRN; d;mJ;LNs, the concepts ofm-Cheeger set andm-calibrable
set coincide with the concepts of J-Cheeger set and J-calibrable
set introduced in [37] (see also [38]), where it is shown that each
ball is a J-calibrable set.
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It is well known (see [28, Fridman, Kawoh]) that, for a bounded
smooth domain Ω � RN, the classical Cheeger constant

h1pΩq :� inf

"
PerpEq

|E|
: E � Ω; |E| ¡ 0

*
;

is an optimal Poincaré constant:

h1pΩq � inf

$''&
''%

»
Ω
|Du| �

»
BΩ
|u|dHN�1

}u}L1pΩq
: u P BV pΩq; }u}L8pΩq � 1

,//.
//- :

A nonlocal version of this result is:
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THEOREM 3.4. Let Ω P B with 0   pΩq   pXq. Then,

hm1 pΩq � inf

$''&
''%

TVmpuq»
X

upxqdpxq
: u P L1pX; qzt0u; u � 0 in XzΩ; u ¥ 0

,//.
//- :

PROOF. Given E P B with pEq ¡ 0, we have
TVmpfflEq

}fflE}L1pX;q
�
PmpEq

pEq
:

Therefore, inft:::u ¤ hm1 pΩq. For the opposite inequality we will follow an idea
used in [28]. Given u P L1pX; qzt0u, with u � 0 in XzΩ and u ¥ 0, we have

TVmpuq �

» �8

0

PmpEtpuqq dt �

» }u}L8pX;q

0

PmpEtpuqq

pEtpuqq
pEtpuqq dt

¥ hm1 pΩq

» �8

0

pEtpuqq dt � hm1 pΩq

»
X

upxqdpxq

where the first equality follows by the coarea formula (Theorem 2.2) and the last
one by Cavalieri’s Principle. Taking the infimum over u in the above expression
we get inft:::u ¥ hm1 pΩq. □
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THEOREM 3.5. [4, Alter, Caselles, Chambolle] Given a bounded
convex set Ω of RN of class C1;1 (|Ω| ¡ 0), the following assertions
are equivalent:

(a) PerpΩq
|Ω| � inf

!PerpEq
|E| : E � Ω; |E| ¡ 0;PerpEq   8

)
:

(b) fflΩ satisfies �∆1fflΩ � –fflΩ, where ∆1u :� div
�
Du
|Du|

	
;

(observe that necessarily – � PerpΩq
|Ω| ).

(c) pN � 1qess sup
xPBΩ

HBΩpxq ¤
PerpΩq
|Ω|

:

In the following results, we will see that the nonlocal counterparts of some of the
implications in this theorem also hold true in our setting, while others do not.
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The next result is the nonlocal version of the fact that (a) is equivalent to (b) in

Theorem 3.5.

THEOREM 3.6. Let Ω P B with 0   pΩq   pXq. Then, the following assertions
are equivalent:

(i) Ω is m-calibrable,

(ii) D– ¡ 0 and a measurable function fi : X Ñ R equal to 1 in Ω such that

�–fi P ∆m
1 fflΩ in X;

(iii)
�–mΩfi

� P ∆m
1 fflΩ in X;

for fi �pxq � fflΩpxq �
1

–mΩ
mxpΩqfflXzΩpxq:
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That is,

Ω is m-calibrable ô �–mΩ fflΩ�mp:q
pΩqfflXzΩ P ∆m1 fflΩ :

Let pXq   8. For Ω P B with 0   pΩq   pXq,
the equation

�–mΩ fflΩ P ∆m1 fflΩ in X

does not hold true.
However, if pXq � �8, it may be satisfied:
Consider the metric random walk space rR; d;mJ;L1s with
J � 1

2
fflr�1;1s. Then,

�–m
J

r�1;1s
fflr�1;1s P ∆m

J

1 fflr�1;1s; –m
J

r�1;1s �
1

4
:
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As a consequence of Theorem 3.5, it holds that
a bounded convex set Ω � RN is calibrable if, and only if,

upt; xq �
�
1�

PerpΩq
|Ω| t

	�
fflΩpxq is a solution of the Cauchy problem

$&
%
ut �∆1u Q 0 in p0;8q � RN;

up0q � fflΩ:

That means, a calibrable convex set Ω is that for which the gradient
descent flow associated to the total variation tends to decrease
linearly the height of fflΩ without distortion of its boundary.

We can obtain a similar result in our context if we introduce an
absorption term in the corresponding Cauchy problem.
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The appearance of this term is due to the nonlocality of the diffusion
considered.

Let Ω P B with 0   pΩq   pXq. Ω is m-calibrable if, and only if,

uptqpxq �
�
1� –mΩ t

��fflΩpxq is a solution of

$&
%
utptqpxq �∆m

1 uptqpxq Q �mxpΩqfflXzΩpxqfflr0;1{–mΩ qptq pt; xq P p0;8q � X;

up0qpxq � fflΩpxq; x P X:
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The following result relates the m-calibrability of a set with its m-
mean curvature. This is the nonlocal version of one of the implica-
tions in the equivalence between (a) and (c) in Theorem 3.5.

PROPOSITION 3.7. Let Ω P B with 0   pΩq   pXq. Then,

Ω m-calibrable ñ -ess sup
xPΩ

Hm
BΩpxq ¤

PmpΩq

pΩq
:

The converse of Proposition 3.7 is not true in general:

x1

2

x2

2

x3

1

x4

10

x5

1

x6

2

x7

2

x8

For Ω � tx2; x3; :::; x7u, E � tx4; x5u, we have

Hm
BΩpxq ¤ 0 @x P Ω; –mΩ �

1

9
; –mE �

1

11
:
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3.2. Eigenvalues of �∆m1

In this section we introduce the eigenvalues of the operator �∆m
1 and its relation

with the Cheeger minimization problem. For the particular case of finite weighted
discrete graphs where the weights are either 0 or 1, this problem was first stud-
ied by Hein and Bühler ([32]) and a more complete study was subsequently
performed by Chang in [19] (see also [20], [21]).

DEFINITION 3.8. A pair p–; uq P R� L2pX; q is called an m-eigenpair of the oper-
ator �∆m

1 , on X if }u}L1pX;q � 1 and there exists ‰ P signpuq (i.e., ‰pxq P signpupxqq

for every x P X) such that

– ‰ P BFmpuq � �∆m
1 u:

The function u is called an m-eigenfunction of �∆m
1 and – an m-eigenvalue of

�∆m
1 associated to u.
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Observe that, if p–; uq is an m-eigenpair of �∆m
1 , then p–;�uq is also an m-

eigenpair of �∆m
1 .

REMARK 3.9. Let p–; uq P R� L2pX; q, }u}L1pX;q � 1. We have:
p–; uq is an m-eigenpair of �∆m

1

õ

there exists ‰ P signpuq, and there exists g P L8pX � X;  b mxq antisymmetric
with }g}8 ¤ 1, such that

�

»
X

gpx; yq dmxpyq � –‰pxq for -a.e. x P X;

and one of this three properties:

�

»
X

»
X

gpx; yqdmxpyq upxqdpxq � TVmpuq;

or

gpx; yqpupyq � upxqq � |upyq � upxq| for  bmx-a.e. px; yq P X � X;

or
– � TVmpuq:
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REMARK 3.10. Note that, since TVmpuq � – for any m-eigenpair
p–; uq of �∆m1 , then

– � TVmpuq �
1

2

»
X

»
X
|upyq � upxq|dmxpyqdpxq

¤
1

2

»
X

»
X
p|upyq| � |upxq|qdmxpyqdpxq � }u}1 � 1;

thus
0 ¤ – ¤ 1:

Observe that, if a locally finite weighted discrete graph contains a vertex x with

no loop, i.e. wx;x � 0, then
�
1; 1

dx
‹x

	
is an m-eigenpair of �∆mG

1 . Conversely, if 1 is

an m-eigenvalue of �∆mG
1 , then there exists at least one vertex in the graph with

no loop (this is an exercise after Proposition 3.19).
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THEOREM 3.11. Assume that rX;B; m; s is m-connected. Let Ω P B
with 0   pΩq   pXq. We have:

(i) If p–mΩ ;
1

pΩq
fflΩq is an m-eigenpair of �∆m1 , then Ω is m-calibrable.

(ii) If Ω is m-calibrable and

(3.2) mxpΩq ¤ –mΩ for -a.e. x P XzΩ;

then p–mΩ ;
1

pΩq
fflΩq is an m-eigenpair of �∆m1 .

The reverse implications in (i) and (ii) are false in general.
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PROOF. (i): Since p–mΩ ;
1

pΩq
fflΩq is an m-eigenpair of �∆m

1 , there exists ‰ P

signpfflΩq such that �–mΩ‰ P ∆m
1 pfflΩq. Then, by Theorem 3.6, we have that Ω is

m-calibrable.

(ii): If Ω is m-calibrable, by Theorem 3.6, we have

�–mΩfi
� P ∆m

1 fflΩ in X

for

fi �pxq �

$'&
'%

1 if x P Ω;

�
1

–mΩ
mxpΩq if x P XzΩ:

Now, by (3.2), we have that fi � P signpfflΩq and, consequently,
�
–mΩ ;

1
pΩq

fflΩ

	
is an

m-eigenpair of �∆m
1 . □
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3.3. The m-Cheeger constant

In 1969, Jeff Cheeger [22] (see also Polya and Szego [42]) proved his famous
inequality

h2M
2
¤ –1p∆Mq;

where M is a compact manifold, –1p∆Mq is the first non-trivial eigenvalue of the
Laplace Beltrami operator ∆M on L2pM; volq and the Cheeger constant hM is de-
fined as follows:

hM :� inf
AreapBSq

minpvolpSq; volpMzSqq
;

where the infimum runs over all S � M with sufficiently smooth boundary.

On graphs, the first results regarding Cheeger’s bound for the first positive eigen-

value of the graph Laplacian are due to Dodziuk [24] and Alon and Milmann [3].

—– Assume that  is a probability measure. —–
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DEFINITION 3.12. We define the Cheeger constant of X as

hmpXq :� inf

"
PmpDq

mintpDq; pXzDqu
: D P B; 0   pDq   1

*
;

or, equivalently,

hmpXq � inf

"
PmpDq

pDq
: D P B; 0   pDq ¤

1

2

*
:

We have that hmpXq ¤ 1. If hmpXq ¡ 0, it is the best constant in the
isoperimetric inequality

–min
 
pDq; 1� pDq

(
¤ PmpDq for every D P B:
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Recall that in Section 3.1 we defined the m-Cheeger constant hm1 pΩq for sets

Ω P B with 0   pΩq   pXq .

In this section, the m-Cheeger constant hmpXq is, instead, a global constant of

the random walk space.

Observe that

hmpXq ¤ hm1 pΩq for any Ω P B : 0   pΩq ¤ 1{2;

and, if hmpXq �
PmpΩq
pΩq for some Ω P B such that 0   pΩq ¤ 1{2,

then
hmpXq � hm1 pΩq

and, moreover, Ω is m-calibrable.
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DEFINITION 3.13. Let pX;B; q be a probability space and let u :

X Ñ R be a measurable function. A real number — is a median
of u (with respect to ) if

ptx P X : upxq   —uq ¤
1

2
and ptx P X : upxq ¡ —uq ¤

1

2
:

We denote by medpuq the set of medians of u.

REMARK 3.14. It is easy to see that

— P medpuq ô �ptu � —uq ¤ ptu ¡ —uq � ptu   —uq ¤ ptu � —uq;

hence

0 P medpuq ô D‰ P signpuq such that
»
X

‰pxqdpxq � 0:

Moreover,

(3.3) arg min

"»
X

|u � c |d : c P R
*
� medpuq:
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The following variational characterization of the Cheeger constant generalizes

the one obtained in [45, Szlam, Bresson] for the particular case of finite graphs.

THEOREM 3.15. The following characterization of the Cheeger con-
stant holds:

hmpXq � inf
!
TVmpuq : u P L

1pX; q; }u}L1pX;q � 1 & 0 P medpuq
)
:
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PROOF. If D P B satisfies 0   pDq ¤ 1
2
, then 0 P medpfflDq. Therefore,

inft:::u ¤ TVm

�
1

pDq
fflD



�

1

pDq
PmpDq;

thus
inft:::u ¤ hmpXq:

Take now u P L1pX; q such that }u}L1pX;q � 1 and 0 P medpuq. Since 0 P medpuq,
by the coarea formula, we obtain that

TVmpuq �

» �8

�8

PmpEtpuqq dt �

» �8

0

PmpEtpuqq dt �

» 0

�8

PmpXzEtpuqq dt

¥ hmpXq

» �8

0

pEtpuqq dt � hmpXq

» 0

�8

pXzEtpuqq dt

� hmpXq

�»
X

u�pxqdpxq �

»
X

u�pxqdpxq



� hmpXq}u}L1pX;q � hmpXq:

Therefore, taking the infimum over u, we get inft:::u ¥ hmpXq: □
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Following [23, Chung] and using Theorem 3.15, the Cheeger in-
equality also holds in our context.

THEOREM 3.16. The following Cheeger inequality holds:
phmpXqq

2

2
¤ gapp�∆mq ¤ 2hmpXq:

COROLLARY 3.17. The following statements are equivalent:

(i) rX;B; m; s satisfies a Poincaré inequality,

(ii) gapp�∆mq ¡ 0,

(iii) hmpXq ¡ 0.
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PROOF OF THEOREM 3.16. Let pfnq � L2pX; q non null such that pfnq � 0 and

lim
nÑ8

2Hmpfnq

}fn}22
� gapp�∆mq:

And let —n P medpfnq.

We begin with some calculations:

4Hmpfnq �

»
X

»
X

pfnpyq � —n � pfnpxq � —nqq
2dmxpyqdpxq

�

»
X

»
X

�
pfnpyq � —nq

� � pfnpxq � —nq
� � ppfnpyq � —nq

� � pfnpxq � —nq
�q
�2

�

»
X

»
X

�
pfnpyq � —nq

� � pfnpxq � —nq
�
�2
�

»
X

»
X

�
pfnpyq � —nq

� � pfnpxq � —nq
�
�2

�2

»
X

»
X

�
pfnpyq � —nq

� � pfnpxq � —nq
�
� �
pfnpyq � —nq

� � pfnpxq � —nq
�
�
:
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Hence,
4Hmpfnq ¥»

X

»
X

�
pfnpyq � —nq

� � pfnpxq � —nq
�
�2
�

»
X

»
X

�
pfnpyq � —nq

� � pfnpxq � —nq
�
�2
:

On the other hand, since pfnq � 0, we have»
X

f 2n pxqdpxq ¤

»
X

pfnpxq � —nq
2dpxq �»

X

�
pfnpxq � —nq

�
�2
dpxq �

»
X

�
pfnpxq � —nq

�
�2
dpxq:

Therefore,

4Hmpfnq

}fn}22
¥

»
X

»
X

�
pfnpyq � —nq

� � pfnpxq � —nq
�
�2
dmxpyqdpxq»

X

�
pfnpxq � —nq

�
�2
dpxq �

»
X

�
pfnpxq � —nq

�
�2
dpxq

�

»
X

»
X

�
pfnpyq � —nq

� � pfnpxq � —nq
�
�2
dmxpyqdpxq»

X

�
pfnpxq � —nq

�
�2
dpxq �

»
X

�
pfnpxq � —nq

�
�2
dpxq

:
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Now,
a � b

c � d
¥ min

"
a

c
;
b

d

*
for every a; b; c; d P R�;

and»
X

�
pfnpxq � —nq

�
�2
dpxq �

»
X

�
pfnpxq � —nq

�
�2
dpxq ¥

»
X

f 2n pxqdpxq ¡ 0:

So, we can assume, without loss of generality, that»
X

�
pfnpxq � —nq

�
�2
dpxq ¡ 0;

and that

4Hmpfnq

}fn}22
¥

»
X

»
X

�
pfnpyq � —nq

� � pfnpxq � —nq
�
�2
dmxpyqdpxq»

X

�
pfnpxq � —nq

�
�2
dpxq

:
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By the Cauchy-Schwartz inequality, we have»
X

»
X

����pfnpyq � —nq��2 � �
pfnpxq � —nq

�
�2��� dmxpyqdpxq

�

»
X

»
X

��pfnpyq � —nq� � pfnpxq � —nq
�
���

�
��pfnpyq � —nq� � pfnpxq � —nq

�
�� dmxpyqdpxq

¤

�»
X

»
X

�
pfnpyq � —nq

� � pfnpxq � —nq
�
�2
dmxpyqdpxq


1
2

�

�

�»
X

»
X

�
pfnpyq � —nq

� � pfnpxq � —nq
�
�2
dmxpyqdpxq


1
2

:
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Now, by the invariance of  with respect to m,»
X

»
X

�
pfnpyq � —nq

� � pfnpxq � —nq
�
�2
dmxpyqdpxq

¤ 4

»
X

�
pfnpxq � —nq

�
�2
dpxq:

Thus,

4Hmpfnq

}fn}2L2pX;q
¥

�
���
1

2

»
X

»
X

����pfnpyq � —nq��2 � �
pfnpxq � —nq

�
�2��� dmxpyqdpxq»

X

�
pfnpxq � —nq

�
�2
dpxq

�
��
2

:

Then, since 0 P med

�
ppfn � —nq�q

2
	

, by Theorem 3.15, we get

phmpXqq
2 ¤

4Hmpfnq

}fn}2L2pX;q
;

and, consequently, taking limits as n Ñ 8, we obtain

phmpXqq
2 ¤ 2gapp�∆mq:
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To prove the other inequality we assume that gapp�∆mq ¡ 0. Then from the
Poincaré’s inequality (1.2) for f � fflD,

gapp�∆mqpDqp1� pDqq ¤ PmpDq for all D P B; 0   pDq   1:

Then
gapp�∆mq

2
min

 
pDq; 1� pDq

(
¤ PmpDq for all D P B; 0   pDq   1;

from this it follows that
gapp�∆mq

2
¤ hmpXq: □
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—– Assume that  is a probability measure. —–

3.4. More about m-eigenvalues of �∆m1 .

PROPOSITION 3.18. Let p–; uq be an m-eigenpair of �∆m1 . Then,

(i) – � 0 ô u is -a.e. a constant,
and p0; 1q and p0;�1q are m-eigenpairs of �∆m1 .

(ii) – � 0 ô there exists ‰ P signpuq such that
»
X
‰pxqdpxq � 0

ô 0 P medpuq:

For finite graphs see Hein and Bühler in [32].
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PROOF OF PROPOSITION 3.18. (i) If – � 0, we have that TVmpuq � 0. Then, u
is -a.e. a constant. Since }u}L1pX;q � 1, either u � 1 or u � �1 -a.e.
If u is -a.e. a constant then TVmpuq � 0 and, – � 0.

(ii) (ð) If – � 0, by (i), we have that u � 1 or u � �1 -a.e., and this is in
contradiction with the existence of ‰ P signpuq such that

³
X ‰pxqdpxq � 0.

(ñ) There exists ‰ P signpuq and g P L8pX � X;  bmxq antisymmetric satisfying

–‰pxq � �

»
X

»
X

gpx; yq dmxpyq:

Hence, by the reversibility of  with respect to m, we have

–

»
X

‰pxqdpxq � �

»
X

»
X

gpx; yq dmxpyqdpxq � 0:

Therefore, since – � 0, »
X

‰pxqdpxq � 0: □
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If – � 0 is anm-eigenvalue of�∆m1 , then there exists anm-eigenvector
u associated to – such that pE0puqq ¡ 0.

PROPOSITION 3.19. Let p–; uq is an m-eigenpair of �∆m1 with – ¡ 0.
Let t ¥ 0. If pEtpuqq ¡ 0, then�

–;
1

pEtpuqq
fflEtpuq



is an m-eigenpair of �∆m1 ,

–mEtpuq � –

and Etpuq is m-calibrable. Moreover, pEtpuqq ¤ 1
2.
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PROOF. First observe that, since 0 P medpuq, pE0puqq ¤
1
2
, thus

pEtpuqq ¤
1
2

for every t ¥ 0.

Since p–; uq is an m-eigenpair, there exist ‰ P signpuq and
gpx; yq P signpupyq � upxqq antisymmetric such that

�

»
X

gpx; yq dmxpyq � –‰pxq for -a.e. x P X:
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Let t ¥ 0 such that pEtpuqq ¡ 0. Then,

‰pxq �

$&
%

1 if x P Etpuq (since upxq ¡ t ¥ 0 and ‰ P signpuq);

P r�1; 1s if x P XzEtpuq;

and, therefore, ‰ P signpfflEtpuqq. On the other hand,

gpx; yq �

$''''''&
''''''%

P r�1; 1s if x; y P Etpuq;

�1 if x P Etpuq; y P XzEtpuq (since upxq ¡ t ¥ upyq);

1 if x P XzEtpuq; y P Etpuq (since upyq ¡ t ¥ upxq);

P r�1; 1s if x; y P XzEtpuq;

and, consequently, gpx; yq P signpfflEtpuqpyq � fflEtpuqpxqq. Therefore, we have that�
–; 1

pEtpuqq
fflEtpuq

	
is an m-eigenpair of �∆m

1 .

By Theorem 3.11, we have that Etpuq is m-calibrable. □
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COROLLARY 3.20. If – � 0 is an m-eigenvalue of �∆m1 then

hmpXq ¤ –:

THEOREM 3.21. Let Ω P B such that 0   pΩq ¤ 1
2.

(i) If Ω andXzΩ arem-calibrable, then
�
–mΩ ;

1
pΩq

fflΩ

	
is anm-eigenpair

of �∆m1 .

(ii) If hmpXq � –mΩ , then Ω and XzΩ are m-calibrable. Therefore,�
–mΩ ;

1
pΩq

fflΩ

	
is an m-eigenpair of �∆m1 .
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COROLLARY 3.22. If hmpXq is a positivem-eigenvalue of�∆m1 , then,
for any eigenvector u associated to hmpXq and any t ¥ 0 such that
pEtpuqq ¡ 0,

�
hmpXq;

1
pEtpuqq

fflEtpuq

	
is an m-eigenpair of �∆m1 ,

pEtpuqq ¤
1
2, and

hmpXq � –mEtpuq:

Moreover, both Etpuq and XzEtpuq are m-calibrable.
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If Ω P B, pΩq � 1
2 (thus –mΩ � 2PmpΩq), we have that:

– Ω andXzΩ arem-calibrable if, and only if,
�
2PmpΩq; tfflΩ � p2� tqfflXzΩ

	
is an m-eigenpair of �∆m1 for any t P r0; 2s.

– If hmpXq � 2PmpΩq then
�
2PmpΩq; tfflΩ � p2� tqfflXzΩ

	
is an m-

eigenpair of �∆m1 for all t P r0; 2s.
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REMARK 3.23. As a consequence of the above results, for finite
(finite vertices) connected weighted discrete graphs, we have that

hmpXq is the first non-zero eigenvalue of �∆m
G

1

(this was already proved in [19, Chang], [20, Chang, Shao, Zhang],
and [32, Hein, Bühler]). To solve the optimal Cheeger cut prob-
lem is enough to find an eigenvector associated u to hmpXq:

tE0puq; XzE0puqu or tE0p�uq; XzE0p�uqu is a Cheeger cut.

In [39] you can find examples of a connected graph with infinite
points but finite measure for which gapp�∆mq � 0 � hmpXq, or for
which hmpXq ¡ 0 is not an m-eigenvalue.



CHAPTER 4

ROF-models in random walk spaces

4.1. Introduction

Let Ω be a rectangle in R2. Given a noisy/corrupted image f : Ω Ñ R by an
additive noise, the problem of removing the noise to get the “clean” image u is
ill-posed.
To clean the image, Rudin, Osher and Fatemi [44] proposed its following pBV; L2q-
decomposition:

f � u– � v–;

where
ru–; v–s � arg min

pu;vqPBV pΩq�L2pΩq

"»
Ω

|Du| �
–

2
}v}22 : f � u � v

*
:

wher – is a kind of “scale parameter”.

99
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Following Meyer ([40]):
– The first component u– models the objects that are present in the
image.
– The second component v– contains the textured parts and the
noise.
By tweaking –, we can select the level of detail desired in the re-
constructed image.

If – is too small then the regularization term TV puq is excessively penalized

and the image is over-smoothed, resulting in a loss of information in the re-

constructed image.

On the other hand, if – is too large then the reconstructed image is under-

regularized and noise is left in the reconstruction.
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In [44], to solve the above ROF-problem, the gradient descent method
was used, which required to solve numerically the parabolic prob-
lem

(4.1)

$'''''''&
'''''''%

ut � div
�
Du
|Du|

	
� –pu � f q in p0;8q � Ω;

Du
|Du| � ” � 0 on p0;8q � BΩ;

up0; xq � v0pxq in x P Ω:

The denoised version of f is approached by the solution of (4.1)
as t increases.

The concept of solution for which this problem is well-posed was given in [6,

Andreu, Ballester, Caselles, Mazón] (see also [7, Andreu, Caselles, Mazón]).
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The use of neighborhood filters has led to nonlocal models:

(4.2) min

"»
Ω�Ω

Jpx � yq|upxq � upyq|dxdy �
–

2
}u � f }22 : u P L2pΩq

*
:

Since an image can be seen as a function on a weighted graph

where the pixels are taken as the vertices,

and the weights are related to the similarity between pixels,

one can also study the ROF-model in a weighted graph
G � pV pGq; EpGqq:

(4.3) min
uPL2pG;Gq

$&
%1

2

¸
xPV pGq

¸
yPV pGq

|upyq � upxq|wxy �
–

2

¸
xPV pGq

|upxq � f pxq|2dx

,.
- :
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—– Let rX;B; m; s be a reversible random walk space with  a
probability measure. —–

4.2. The m-ROF model with L2-fidelity term

Problems (4.2) and (4.3) are particular cases of the following
m-ROF-model in rX;B; m; s:

min
uPL2pX;q

"
1

2

»
X

»
X

|upyq � upxq|dmxpyqdpxq �
–

2

»
X

|upxq � f pxq|2dpxq

*
;

or

(4.4) min

"
TVmpuq �

–

2
}u � f }2

L2pX;q
: u P L2pX; q

*
;

for f P L2pX; q.
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THEOREM 4.1. For any f P L2pX; q and – ¡ 0, there exists a unique
minimizer u– of problem (4.4). Moreover, u– is the unique solution
of the problem

(4.5) –pu � f q P ∆m1 puq:

PROOF. Set

Gmpu; f ; –q :� TVmpuq �
–

2
}u � f }2L2pX;q; u P L

2pX; q:

Let f P L2pX; q and let tununPN � L2pX; q be a minimizing sequence of problem
(4.4), i.e.,

¸ :� inf
 
Gmpu; f ; –q : u P L2pX; q

(
� lim

nÑ8
Gmpun; f ; –q:

Since

}un}
2
L2pX;q ¤ 2

�
}un � f }

2
L2pX;q � }f }2L2pX;q

	
¤ 2

�
2

–
Gmpun; f ; –q � }f }2L2pX;q



;
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we have that tununPN is bounded in L2pX; q and we can assume that, up to a
subsequence,

un á u– weakly in L2pX; q:

Therefore, by lower semi-continuity with respect to the weak convergence in
L2pX; q, we have that

Gmpu–; f ; –q ¤ lim inf
nÑ8

Gmpun; f ; –q � ¸;

hence u– is a minimizer of problem (4.4). The uniqueness of the minimizer fol-
lows from the strict convexity of } � }2

L2pX;q
and the convexity of TVm.

Since u– is a minimizer of problem (4.4), we have that 0 P BGmpu–; f ; –q. Now, if
Φpuq :� –

2
}u � f }2

L2pX;q
, then, by [14, Brezis] we have that

BGmpu; f ; –q � BTVmpuq � BΦpuq;

thus
0 P BGmpu–; f ; –q � BTVmpu–q � –pu– � f q;

which yields (4.5). □
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The m-ROF-model leads to the following pBV; L2q-decomposition:
$''&
''%
f � u– � v–;

ru–; v–s � arg min
pu;vqPL2pX;q�L2pX;q

"
TVmpuq �

–

2
}v}2

L2pX;q
: f � u � v

*
:

We have that
v– � divmpzq; z P L

8pX � X;  bmxq;

}v–}m;� ¤
1
– and

–

»
X
v–u–d � TVmpu–q;

where

}g}m;� :� inf
!
}z}L8pX�X;bmxq : g � divmpzq

)
; g P L2pX; q:
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Multiscale decomposition:

We have that
}f }m;� ¤

1

–
ô u– � 0:

So, for continuing the cleaning by using v– as a image to clean, we
need to use

–2 ¡
1

}v–}m;�
:
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PROPOSITION 4.2. Let f P L2pX; q. If u– P L2pX; q is the unique
minimizer of problem (4.4) then»

X
u–pxqdpxq �

»
X
f pxqdpxq:

PROPOSITION 4.3 (Maximum Principle). Let f1, f2 P L2pX; q. If
rui ;–; vi ;–s is the pBV; L2q-decomposition of fi , i � 1; 2, then

}pu1;– � u2;–q
�}L2pX;q ¤ }pf1 � f2q

�}L2pX;q:

In particular, for c; C P R, if c ¤ f ¤ C -a.e., and ru–; v–s is the
pBV; L2q-decomposition of f , then

c ¤ u– ¤ C -a.e.
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4.2.1. The Gradient Descent Method. Consider the following
Cauchy problem:$&

% vt P ∆m1 vptq � –pvptq � f q in p0; T q � X

vp0; xq � v0pxq in x P X;

with v0 satisfying
³
Ω v0 �

³
Ω f :

THEOREM 4.4. Such problem has a solution, that preserves the
mass, and

(4.6) }vptq � u–}L2pX;q ¤ }v0 � u–}L2pX;q e
�–t for all t ¥ 0;

where u– is the unique minimizer of problem (4.4) for such f .
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PROOF. We have

vt � –pvptq � f q P ∆m
1 pvptqq;

and, by Theorem 4.1,

–pu– � f q P ∆m
1 pu–q:

Now, since �∆m
1 is a monotone operator in L2pX; q, we get»
X

pvptq � u–qp�vt � –pvptq � f q � p�–pu– � f qqd ¥ 0;

from where it follows that
1

2

d

dt

»
X

pvptq � u–q
2d � –

»
X

pvptq � u–q
2d ¤ 0:

Then, integrating this ordinary differential inequality, we obtain (4.6). □
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—– Let rX;B; m; s be a reversible random walk space with  a
probability measure. —–

4.3. The m-ROF-model with L1-fidelity term

In this section we will study the m-ROF-model with L1-fidelity term,
that is, given f P L1pX; q and – ¡ 0, we will study

min

"
TVmpuq � –

»
X
|u � f |d : u P L1pX; q

*
:

See Alliney [1, 2], Chan, Esedoglu and Nikolova [17, 18] for the local problem.

The resulting pBV; L1q-decomposition differs from the pBV; L2q-one in several im-

portant aspects, for example, the pBV; L1q-decomposition is contrast invariant

([17]), as opposed to the pBV; L2q-decomposition.
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We denote

Empu; f ; –q :� TVmpuq � –

»
X
|u � f |d; u P L1pX; q:

And the set of minimizers of Emp�; f ; –q by Mpf ; –q:

Mpf ; –q :�

#
u P L1pX; q : Empu; f ; –q � inf

uPL1pX;q
Empu; f ; –q

+
:

This set can have several elements, it is convex and closed in
L1pX; q.



4. m-ROF-models 113

In the local case, for every datum in L1 a minimizer can be found
via the direct method of the calculus of variations.

However, in our context, we do not have sufficient compactness
properties in order to apply this method.

To prove that Mpf ; –q � H for every f P L1pX; q we study the geo-
metric problem associated to the pBV; L1q-decomposition (which is
addressed in the next section).



114 4. m-ROF-models

PROPOSITION 4.5 (Maximum principle). Let f P L1pX; q, – ¡ 0 and
c; C P R, and assume that c ¤ f ¤ C -a.e. Then,

inf
uPL1pX;q

Empu; f ; –q � inf
u P L1pX; q

c ¤ u ¤ C

Empu; f ; –q:

and, for any u P Mpf ; –q,

c ¤ u ¤ C -a.e.

THEOREM 4.6 (Euler-Lagrange equation). Let f P L2pX; q, – ¡ 0

and u– P L2pX; q. Then, u– P Mpf ; –q if, and only if, there exists
‰ P signpu– � f q such that

–‰ P ∆m1 pu–q:
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EXERCISE 4.7 (Contrast invariance). Let f P L2pX; q, – ¡ 0 and
T : R Ñ R a nondecreasing function. If u– P Mpf ; –q, then T pu–q P
MpT pf q; –q.
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4.3.1. The Geometric Problem.

Given F P B and – ¡ 0,

EGmpA; F; –q :� EmpfflA; fflF ; –q; A P B;

that is
EGmpA; F; –q � PmpAq � –pA△ F q:

THEOREM 4.8. Let u, f P L1pX; q and – ¡ 0, then

Empu; f ; –q �
» �8
�8

EGmpEtpuq; Etpf q; –qdt:

For Ω P B,

Empu; fflΩ; –q �
» 1

0
EGmpEtpuq;Ω; –qdt:
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THEOREM 4.9. Let F P B be a non--null set and – ¡ 0.

(i) There exists a minimizer u– of Emp�; fflF ; –q.

(ii) For a.e. t Ps0; 1r, Etpu–q is a minimizer of EGmp�; F; –q, and

Empu–; fflF ; –q � EGmpEtpu–q; F; –q:
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PROOF. Since fflF P L8pX; q, by the direct method of the calculus of varia-
tions, we have that there exists u– such that

Empu–; fflF ; –q � min
uPL1pX;q

Empu; fflF ; –q:

Indeed, by Proposition 4.5, there exists a minimizing sequence un with 0 ¤ un ¤

1, hence, bounded in L2pX; q. Then, by using Mazur’s Lemma and the convexity
of Emp:; fflF ; –q, we get a minimizing sequence strongly convergent to some u– in
L2pX; q. Now, by the lower semi-continuity of Emp:; fflF ; –q w.r.t. L1pX; q, we have
that u– is a minimizer.

Now, by Theorem 4.8,» 1

0

EGmpEtpu–q; F; –qdt � Empu–; fflF ; –q ¤ inf
APB

EmpfflA; fflF ; –q � inf
APB

EGmpA; F; –q;

hence, for a.e. t Ps0; 1r,

EGmpEtpu–q; F; –q � inf
APB

EGmpA; F; –q;

which concludes the proof. □
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Adapting the ideas given in [48, Yin, Golfarb, Osher] for the local
case, and thanks to the submodularity of the m-perimeter:

PROPOSITION 4.10. Let F1, F2 P B, F1 � F2, and – ¡ 0. Suppose
that A1, A2 P B are minimizers of EGmp�; F1; –q and EGmp�; F2; –q, re-
spectively. Then, A1 X A2 and A1 Y A2 minimize EGmp�; F1; –q and
EGmp�; F2; –q, respectively.

THEOREM 4.11. Given f P L1pX; q and – ¡ 0, there exists a func-
tion u P L1pX; q such that

EGmpEtpuq; Etpf q; –q � inf
APB

EGmpA;Etpf q; –q @t P R;

and it is a minimizer of the variational problem

min
uPL1pX;q

Empu; f ; –q:
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In the local case ([25, Duval, Aujol, Gousseau]) at points where the boundary of

a minimizer E of the geometric problem for datum F � R2 and fidelity parameter

– does not coincide with the boundary of F , the mean curvature of BE is �–.

There is a nonlocal counterpart of this fact where, the nonlocal character of the

problem gives rise to a nontrivial extension. We state it for weighted graphs

without loops:

Let – ¡ 0 and F P B with 0   pF q   1, and let E P B be a minimizer of EGmp�; F; –q.
Then:

max

#
sup
xPFXE

HmG

BE pxq; sup
xRFYE

�
�HmG

BE pxq
	+

¤ – ¤ min

"
inf

xPEzF

�
�HmG

BE pxq
	
; inf
xPF zE

HmG

BE pxq

*
:
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4.3.2. Thresholding parameters.

In the local case it is well known ([17, Chan, Esedoglu]) that for
f � fflBr p0q the solution u– of the problem is given by:

(i) u– � fflBr p0q if – ¥ 2
r ,

(ii) u– � cfflBr p0q with 0 ¤ c ¤ 1 if – � 2
r ,

(iii) u– � 0 if 0   – ¤ 2
r , that is, it suddenly vanishes.

The thresholding property for a set in R2 implies (a) in Theorem 3.5, and both

properties are equivalent for convex sets ([25, Duval, Aujol, Gousseau]).

We now see thresholding properties in the nonlocal case.
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LEMMA 4.12. For Ω P B and – ¡ 0,

u– P MpfflΩ; –q ô 1� u– P MpfflXzΩ; –q:

LEMMA 4.13. Let f P L1pX; q and –0 ¡ 0.

(i) If f P Mpf ; –0q then
tf u � Mpf ; –q @– ¡ –0:

(ii) If f P L2pX; q and a constant c P Mpf ; –0q then c P medpf q,

medpf q � Mpf ; –0q;

and
medpf q � Mpf ; –q @0   –   –0:

(iii) Let –0   –1. If u P Mpf ; –0q XMpf ; –1q then u P Mpf ; –q for every –0 ¤ – ¤ –1.
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PROOF. (i): Take – ¡ –0, then, for any u P L1pX; q such that ptu � f uq ¡ 0,
we have

Empf ; f ; –q � TVmpf q � Empf ; f ; –0q ¤ Empu; f ; –0q   Empu; f ; –q:

(ii): Since c P Mpf ; –0q we have that, by Theorem 4.6, there exists ‰ P signpc �
f q and g P L8pX � X;  bmxq antisymmetric satisfying»

X

gpx; yq dmxpyq � –0‰pxq for -a.e x P X and

gpx; yq P signp0q for p bmxq-a.e. px; yq P X � X:

Then, »
X

‰dpxq �
1

–0

»
X

»
X

gpx; yq dmxpyqdpxq � 0;

so that 0 P medpc� f q, which is equivalent to c P medpf q. Now, for –   –0, taking
g–px; yq �

–
–0
gpx; yq we obtain that

c P Mpf ; –q:
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Furthermore, by (3.3), for any other m P medpf q and any – ¡ 0,

Epc; f ; –0q � –

»
X

|c � f |d � –

»
X

|m � f |d � Epm; f ; –q;

so that
medpf q � Mpf ; –0q; @0   – ¤ –0:

Now, let m P medpf q, for any constant function k R medpf q, by (3.3) we have
that »

X

|k � f |d ¡

»
X

|m � f |d

so k R Mpf ; –q for every – ¡ 0.
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Suppose then that there exists some nonconstant function u, such that u P

Mpf ; –q for 0   –   –0. Since  is ergodic with respect to m we have that

TVmpuq ¡ 0, thus Epu; f ; –q ¤ Epm; f ; –q implies that
»
X

|u� f |d  

»
X

|m� f |; and

therefore

Epu; f ; –0q � Epu; f ; –q � p–0 � –q

»
X

|u � f |d

  Epm; f ; –q � p–0 � –q

»
X

|m � f |d � Epm; f ; –0q

which is a contradiction. Consequently,

medpf q � Mpf ; –q @0   –   –0:

(iii) follows easily. □
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PROPOSITION 4.14. Assume that rX;B; m; s is m-connected.
Let p–0; u0q be an m-eigenpair of �∆m1 with –0 ¡ 0. Then,

0 P medpu0q and

$'''&
'''%
tu0u � Mpu0; –q if – ¡ –0;

tcu0 : 0 ¤ c ¤ 1u Ymedpu0q � Mpu0; –0q

medpu0q � Mpu0; –q if 0   –   –0:
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PROOF. Since p–0; u0q is an m-eigenpair of �∆m
1 with –0 ¡ 0, we have that

0 P medpu0q. Furthermore, by the definition of m-eigenpair, we have that

D‰0 P signpu0q such that � –0‰0 P ∆m
1 pu0q:

Hence, for 0   c ¤ 1, ‰ :� �‰0 P signpcu0 � u0q and –0‰ P ∆m
1 pu0q � ∆m

1 pcu0q,
which implies that cu0 P Mpu0; –0q. Moreover, since TVmpu0q � –0 (see Remark
3.9) and }u0}L1pX;q � 1, we have that

Epu0; u0; –0q � –0 � Ep0; u0; –0q:

Consequently, by Lemma 4.13, we get the rest of the thesis. □
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PROPOSITION 4.15. Assume that rX;B; m; s is m-connected. Let Ω P B with
0   pΩq   1. The following statements are equivalent:

(i) fflΩ P MpfflΩ; –
m
Ωq,

(ii)
�
–mΩ ;

1
pΩq

fflΩ

	
is an m-eigenpair (hence Ω is calibrable),

(iii) the following thresholding property holds:$&
%
fflΩ P MpfflΩ; –q @– ¥ –mΩ ;

0 P MpfflΩ; –q @ 0   – ¤ –mΩ ;

(iv) there exists a thresholding parameter –� ¡ 0 such that$&
%
fflΩ P MpfflΩ; –q @– ¡ –�;

0 P MpfflΩ; –q @ 0   –   –�;

(ñ –� � –mΩ).
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For Ω P B, set

–�pΩq :� }fflΩ �mp:qpΩq}L8pX;q:

We have that
maxt–mΩ ; –

m
XzΩu ¤ –�pΩq:

THEOREM 4.16. Assume that rX;B; m; s is m-connected and let
Ω P B. There exists –pΩq P R;

maxt–mΩ ; –
m
XzΩu ¤ –pΩq ¤ –�pΩq

such that $''&
''%
tfflΩu � MpfflΩ; –q if – ¡ –pΩq;

fflΩ P MpfflΩ; –pΩqq;

fflΩ R MpfflΩ; –q if 0   –   –pΩq:
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Furthermore,

–pΩq � –mΩ if, and only if,
�
–mΩ ;

1

pΩq
fflΩ



is an m-eigenpair,

and

–pΩq � –mXzΩ if, and only if,
�
–mXzΩ;

1

pXzΩq
fflXzΩ



is an m-eigenpair:

We have:

–pΩq � sup

"
PmpΩq � PmpEq

pΩ△ Eq
: E P B; pΩ△ Eq ¡ 0

*
:
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We now provide some results regarding a thresholding parameter under which
the set of minimizers are constant functions.

PROPOSITION 4.17. Let Ω P B.

(i) If there exists – ¡ 0 such that 0 P MpfflΩ; –q, then there exists –0pΩq with
0   –0pΩq ¤ hm1 pΩq such that#

0 R MpfflΩ; –q if – ¡ –0pΩq;

0 P MpfflΩ; –
0pΩqq;

(ñ medpfflΩq � MpfflΩ; –q for 0   –   –0pΩq).

(ii) If there exists – ¡ 0 such that 1 P MpfflΩ; –q, then there exists –1pΩq with
0   –1pΩq ¤ hm1 pXzΩq such that#

1 R MpfflΩ; –q if – ¡ –1pΩq;

1 P MpfflΩ; –
1pΩqq;

(ñ medpfflΩq � MpfflΩ; –q for 0   –   –1pΩq).
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We can set –0pΩq � 0 if there is no – ¡ 0 such that 0 P MpfflΩ; –q,
and –1pΩq � 0 if there is no – ¡ 0 such that 1 P MpfflΩ; –q.

–0pΩq � inf

"
PmpEq

pΩq � pΩ△ Eq
: E P B; pΩ△ Eq   pΩq

*
:

PROPOSITION 4.18. Let 0   pΩq   1. If –0pΩq ¥ –mΩ then Ω is
m-calibrable.
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The following example proves that when the image is the charac-
teristic function of a set Ω, the minimizer does not have be the char-
acteristic function of a set contained in Ω.

We will observe how the solutions remain the same between cer-
tain parameters and make sudden transitions at certain values. In
particular, we see how a set may suddenly vanish.

In the continuous setting, when Ω is a bounded convex domain, for almost all

– ¥ 0 there is a unique minimizer which, moreover, is the characteristic function

of a set contained in Ω (see [17, Chan, Esedoglu]).
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EXAMPLE 4.19. Image: fflt1;2u.

In red the minimizers u– for the indicated parameter –.

x1

5

x2

6

x3

2

x4

1

x5

3

x6

FIGURE 1. – ¡ 1
2
� –pΩq, Mpfflt1;2u;

1
2
q � tfflt1;2u � cfflt3u : c P r0; 1su.

x1 x2 x3 x4 x5 x6

FIGURE 2. 1
3
  –   1

2
, Mpfflt1;2u;

1
3
q � tfflt1;2;3u � cfflt4u : c P r0; 1su.

x1 x2 x3 x4 x5 x6

FIGURE 3. 1
5
  –   1

3
, Mpfflt1;2u;

1
5
q � tcfflt1;2;3;4u : c P r0; 1su.

x1 x2 x3 x4 x5 x6

FIGURE 4. –   1
5
� –0pΩq.
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EXAMPLE 4.20.

(A) Ω is the set formed by the points inside the shaded region. (B) The minimizer, E, for 1
3   –   2

5 is the set formed by the points
inside the shaded region.

FIGURE 5. The point p0; 0q is labelled in the graphs, and the adjacent points are represented by dots.
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4.3.3. The Gradient Descent Method. In order to apply this method
one needs to solve the Cauchy problem

(4.7)

$&
%
vt P ∆m1 vptq � –signpvptq � f q in p0; T q � X

vp0; xq � v0pxq in X;

that can be rewritten as the following abstract Cauchy problem in
L2pX; q

(4.8) v 1ptq � BEmpu; f ; –qpvptqq Q 0; vp0q � v0:
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Let f be in L1pX; q. Since Emp�; f ; –q is convex and lower semi-
continuous, by the theory of maximal monotone operators ([14]),
we have that, for any initial data v0 P L2pX; q, problem (4.8) has a
unique strong solution.

THEOREM 4.21. For every v0 P L2pX; q there exists a unique strong
solution of the Cauchy problem (4.7) in p0; T q for any T ¡ 0. More-
over, we have the following contraction principle in any LqpX; q–
space, 1 ¤ q ¤ 8:

}vptq � wptq}LqpX;q ¤ }v0 � w0}LqpX;q @ 0   t   T;

for any pair of solutions v; w of problem (4.7) with initial datum v0

and w0, respectively.
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THEOREM 4.22. Assume that f P L1pX; q. Let v0 P L2pX; q and
vptq :� T–ptqv0. If the !-limit set

!pv0q :� tw P L2pX; q : Dtn Ñ �8 s:t: lim
nÑ8

vptnq � wu

is non-empty, then there exists u� P Mpf ; –q such that

lim
tÑ8

vptq � u� in L2pX; q:

Proving that the !-limit set !pv0q is non-empty is not an easy task here. For

example, one could try to proceed with the usual method of proving that the

resolvent is compact, but this requires the use of regularity results which are dif-

ficult to obtain in our context due to the non-locality of the problem. Nonetheless,

in finite graphs it is trivially true that the !-limit set is non-empty. Consequently,

we have the following result.
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COROLLARY 4.23. Let rV pGq; dG; mG; Gs be the metric random walk
space associated to a locally finite weighted discrete graph G �

pV pGq; EpGqq. Suppose that G is a probability measure. Then,
for every v0 P L2pV pGq; Gq and for vptq :� T–ptqv0, there exists
u� P Mpf ; –q such that

lim
tÑ8

vptq � u� in L2pV pGq; Gq:
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