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Majorization-Minimization principle

When it is successful, the MM algorithm substitutes a simple optimization
problem for a difficult optimization problem. - K. Lange
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Majorization-Minimization principle

Majorization - Minimization (MM)
(= optimization transfer = iterative majorization
= auxiliary function method = surrogate minimization)

The MM principle consists of solving a minimization problem by
alternating between two steps:

1. Majorize the criterion at current iterate with a majorant function ,

2. Minimize the majorant function to define the next iterate.
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Majorization-Minimization principle

Majorization - Minimization (MM)
(= optimization transfer = iterative majorization
= auxiliary function method = surrogate minimization)

The MM principle consists of solving a minimization problem by
alternating between two steps:

1. Majorize the criterion at current iterate with a majorant function ,

2. Minimize the majorant function to define the next iterate.

— The construction of an MM algorithm thus requires to define
(1) a strategy for building majorant functions

(1) a strategy for minimizing them.
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Majorant function

Let f : H — ]—o0, +oQ]j\Nhereﬂ__is a Hilbert space. Let y € H.
h(-,y)): H — |—o00,+0oc] is a majorant function of f at y if:

Q\(/\ LX> {(‘v’x cH)  fRI(ShEy), xakion
'Y ”@) f(¥) = hly.y) lcvgencay
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Majorant function

Let 1 : H — |]—00,400] and fh : H — |—0o0, +0o0]. Let y € H.
Let hi(-,y) : H — |—o0, +00] be a majorant function of f; at y,
and let ha(-,y) : H — ]—00,+oc]| be a majorant function of f, at y.

Sum
hi(-,y) + h2(-,y) is a majorant function of f + £ at y.
Product
If, for all x € H, fi(x) > 0 and f(x) > 0, then
hi(-,y)h2(-,y) is a majorant function of fif, at y.
Composition
If : R — |—o00,+o¢] is an increasing function, then
¢(h1(-, y)) is a majorant function of ¢(f1) at y.




Majorization-Minimization algorithm
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Problem: Minimization of function f : H — |—o00, +00].

MM Algorithm h(-, Xn)

Xnt1 € Argmin h(x, xp)
XEH

where h(-, x,) is a majorant function \
for f at x,.

Xn Xn+1
— The sequence (f(xn)),cy is decreasing:

(Vn e N)  f(xpr1)<h(xps1, xn)<h(xn, xn) = F(xn)
M M
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Majorization-Minimization algorithm

Problem: Minimization of function f : H — |—o00, +00].

MM Algorithm

h "y An
Xnt1 € Argmin h(x, xp) (s xne1)

xEH

where h(-, x,) is a majorant function
for f at x,.

- - Xn+1Xn4-2
— The sequence (f(xn)),cy is decreasing:

(Vn e N)  f(xpr1)<h(xps1, xn)<h(xn, xn) = F(xn)
M M
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Majorization-Minimization algorithm

Problem: Minimization of function f : H — |—o00, +00].

MM Algorithm

Xpi1 € Argmin h(x, x,) h(-, xnt2)
x€H

where h(-, x,) is a majorant function
for f at x,.

- - Xn+2Xn+3 - -
— The sequence (f(xn)),cy is decreasing:

(Vn e N)  f(xpr1)<h(xps1, xn)<h(xn, xn) = F(xn)
M M
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Majorization techniques

Concave function

Let f : H — [—o00, +00| be a concave function. Let y € H and ¢
(—t) € O(—f)(y). A majorant function for f at y € H is j?

@ h(x,y) = f(y) + ({tlx —y). %

I — //

7\
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Majorization techniques

Twice-differentiable function

Let f : RN — ]—o00, +00] be a twice differéntiable function on RV with Hessian
V2f. Let. A € RVXN ;4 positive sentidefinite matrix-such that, for every x € RN
A — N?f(x) is positive semidefinite,/Then, for every y ¢ RV,

a majorant function for f at y € R" is

(7x € RY)  h(xCy) = fy) + (VEY)x =575 x —y [ A= ).
Ix —yla

Jensen’s inequality
_/

Let@: R — ]—o00,+00] be a convex function and let w = (w));cjcny €
[0, +00[V be such that 3=V . w() = 1. Then, —
L/_/

N N

(V(X(l), e ,X(N)) S HN> (0 (Z w(i)x(i)> < Zw(i)w (X(i)) :
(= ) = B
T
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Exercises

Prove the following majorizing properties:

L (V(x,y) € (R*)?)(Yq €]0,1]) gjﬁ@

2. (V(x,y) € (RT™)?) logx < , tlogy —1

] x (1)
3. (Vx €RN)  exp (% vazl x! )) < 4 vazl e

x|y)
v

Lo (Wx e RM)(Vy e RN\ {0})  —Ix|| < —

5 (V(x.2) ER?)(Y(y. 1) € (RT)?) 2xz < St 4 2
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Exercises

Solutions :

Use concavity of x — x9 on RT, for g €]0, 1].

Use concavity of x — log x on R**.

Apply Jensen's inequality on the convex function exp.
Use concavity of x — —||x]||.

Develop the inequality (x/y — z/t)? > 0, for (x, z) € R? and
(v, t) € (RT*)?.

o kR b=
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Majorization techniques

Even differentiable function
Let f be defined as

(vx €R)  F(x) = ¥(Ix])

where
r;_>() W is differentiable on@ \

(11} ¢(/") is concave on 10, +00],
I (|||

) (Vx € [0, +o0]) x) >0, ~ ,
1> (iv) I|m)X<_>8 (w(x) @ | \\J

N7 >
UV )<;€2”
Then, for all y € R,

(Vx €R) f(x) < f(y) +Hy)(x—y)+ w(\yl)x—y)2

n
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According to Assumption (ii), ¢ = 1(+/*) is concave on ]0, +00[. Thus,
using Assumption (i), for all (u,v) €]0, +oo[?, ¢(u) < (v)+ (u— v)p(v),
with o(v) = Qp(f) (which is positive by Assumption (iii)). Then, for every
(x,y) € (R*)2 2 A

p(x7) < p(y?) + (X =y )wllyl)-

Using the equality x*> — y? = (x — y)? + 2y(x — y), we deduce that

P(x2) < oly?) + sign(y)lly)x — y) + 5 (x — y eIy,

hence the result (by continuity, for x = 0 and/or y = 0 using Assumption

(iv)).



Exampies of functions f
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SXT Y ) (%)
/" Ix| — b log(Ix|/5 + 1) (Ix| +8)~"
Y K {x2 if [x| < & {2 if x| < 6
z 26|x| — 8% otherwise 26/|x| otherwise
S[ T log(cosh(x)) tanh(x)/x
(14 x%/6%)/2 — 1 (1/8%)(1 + x2/82)r/>1

/1 1= exp(—x7/(207)) (1/6°%) exp(—x*/(26))
’ / x2 /(262 + x?) 452 /(267 + x2)?
% {1 — (1= x?/(66%))% if|x| < V66 {(1/52)(1 — x2/(66%))? if|x| < V66
O 1 otherwise 0 otherwise
= \ tanh(x2/(26%)) (1/62)(cosh(x2/(262))) 2

N log(1 + x2/62) 2/(5% + x?)

(A, 0) €]0, 400

% k€ [1,2]
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Examples of functions f

F(x) = (14 5)2 =1, F(x) = log (14 %5 ), F(x) = 1 — exp(— )
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MM quadratic algorithm

Problem: Minimization of a differentiable function f : H — R.

Assumption: For every y € H, there exists a strongly positive self-adjoint
operator A(y) such that the quadratic function

(W € 1) h(xy) = F) + (TFx—y) + 5~ vl

Is @ majorant function of f at y.

MM quadratic algorithm

Xpi1 = Xp — QnA(Xn)_1Vf(Xn), 0, € (0,2).

— (0n), acts as a stepsize parameter.
For 6, = 1, we recover the basic MM algorithm.
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Convergence properties

1L f:H — Ris a coercive, differentiable function.
?. There exists (v,7) €]0, +o00[? such that (Vn € N) vId < A(x,) =< 71d,
3. There exists (0, 60) €]0, +oo[? such that, (VneN) 0 <0,<2—0.

Sufficient descent property

There exists (1, i2) €]0, +o00[? such that

(Vn €N)  f(xn) = f(3nr1) 2 puallXar1 — xall* = p2l V()|

Convergence theorem (in finite dimension)

1. Vf(x,) — 0 and f(x,) \, f(x) for some x € H.

2. If f is continuously differentiable, any sequential cluster point of (x;)neN
Is a stationnary point of f.

5. If f is convex, any sequential cluster point of (xp)nen is @ minimizer of f.

4 If fis strictly convex, then x, — X where X is the unique minimizer of f.
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Let n € N. According to the majoration property, f(xp11) < h(Xn+1,Xn),
with A(Xn+1, Xn) = F(Xn) + (VF(Xn) [ Xnt1 — Xn) + 3| Xnt1 — Xn”i\(x,,y
Moreover, we have Vf(x,) + 0 1A(x,)(xn11 — X») = 0. Therefore, on the
one hand,

B 1
f(Xn—|—1) < f(Xn) — ((9,7 T 5) HXfH—l - XnHi\(Xn),
1 1
< 10n) = (525~ 3 ) ellowsa =5l
e

On the other hand,
IVF(xa)ll = 05 | AGn) (X1 — xn) I,
< 91y | Xxne1 — Xnl|
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Since f is coercive, (f(xn)), is a decreasing bounded sequence so (x,)n
belongs to a compact subset of . Then, there exists a subsequence (xp, )«
which converges to some x € H.

By continuity of f, f(x,, ) — f(X) so that f(x,) \ f(X).
IVF(x,)|| — 0 and

According to the descent properties,
[Xn+1 — Xa|| — 0.

If f is continuously differentiable, Vf(x) = 0, so that x is a critical point.
If f is convex, every critical point is a minimizer of f.

If £ is strongly convex, the set of critical point is reduced to a singleton,
equals to the unique minimizer of f.
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Acceleration via subspace strategy

Problem: Minimization of differentiable function f : H — R.

MM quadratic algorithm: Xpt1 € Argmin h(x, x,)
xeH

Difficulty: In the context of large scale optimization, the minimization of
h over H may become untractable.
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Acceleration via subspace strategy

Problem: Minimization of differentiable function f : H — R.

MM quadratic algorithm: Xpt1 € Argmin h(x, x,)

xeH
Difficulty: In the context of large scale optimization, the minimization of
h over H may become untractable.

— Subspace strategy: Instead of minimizing h over the whole set X,
restrict the minimization space to a subspace spanned by a small number
of vectors.

MM quadratic subspace algorithm: Xpi1 € Argmin h(x, xn),
xEspan(d,%,d,%,...,d,y”

where, for every n € N, M, > 1, and D, = [d} |d?|...|d}r] € HMn.



Choices for the subspace
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Subspace name

Set of directions D,

Memory gradient
Supermemory gradient
Gradient subspace
Nemirovski subspace
Sequential subspace

Quasi-Newton subspace

—V£(xn)
—V£(xn)

—V£(xn)

dn—l]
do1| ... | doem]
_ Vf(xn_l) ‘ . | — vf(xn—m)]

[—Vf(xn) [ xn — X0 | Doy w,-Vf(x,-)]
[—Vf(Xn) ’Xn — X0 ‘ 27:0 w,-Vf(x,-) ‘ dn—l ‘ c . ’ dn—m]

=V F) [ Gt |+ 0o | Aot | v | doem]

where, for all n > 0, (Wi)1§i§n € R", d, = xp11 —xp and 6, = VF(xn11) — VI(xp).
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MM quadratic subspace algorithm

Problem: Minimization of f : H — R where f is differentiable.

Assumption: For all y € H, there exists a strongly positive self-adjoint
operator A(y) such that the quadratic function

(Vx € H)  h(x,y) = f(y) +{(VF(y)lx —y) + %HX —vlag)

Is a majorant function of f at y.

MM quadratic subspace algorithm
Choose D,, € HMn

u, € Argmin h (x,, -+ Z,’;/’”Zl u(m)d,T,xn) :
ueRMn

Xp4+1 = Xp + Zm 1 (m)dm

— 3MG algorithm obtained when (D,), is the memory gradient subspace.
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Convergence properties

1. f:H — Ris a coercive, differentiable function.
0. There exists (v,7) €]0, +oo[? such that (Vn € N) vId < A(x,) < 71d,
3. There exists (79,71) €]0, +00[? such that

(Vn € N)  (Vf(xa)ldn) < =70l VF(xa)l|* and [[dall < n[[VE(xa)ll.

Sufficient descent property
There exists (1, p2) €]0, +00[? such that

(Vn € N)  f(xn) = f(xat1) = pallxns1 = Xall® = p2[ VE (xa) ||

Convergence theorem (in finite dimension

L. Vf(x,) — 0 and f(x,) N\ f(X) where X is a critical point of f.
2. If f is convex, any sequential cluster point of (x,)nen is @ minimizer of f.
3. If f is strictly convex, then x, — X where X is the unique minimizer of f.
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Acceleration via block-alternation

Problem: Minimization of f : H — |—00, +o0].




27/40

Acceleration via block-alternation

Problem: Minimization of f : H — |—00, +o0].

] X(l) S Hl

X(2) S Hz

where 7'[1,...,7'[_/
separable real

Hilbert spaces.
X(J) c HJ
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Acceleration via block-alternation

Problem: Minimization of f : H — |—00, +o0].

M [
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Acceleration via block-alternation

Problem: Minimization of f : H — |—00, +o0].
] X(l)
/ X<2>\
\M/

— Block-coordinate strategy: Instead of updating the whole vector x at
iteration n € N, restrict the update to a block j, € {1,...,J}.
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Block-coordinate MM quadratic algorithm

Problem: Minimization of f : H — IR where f is differentiable.

Assumption: For every y € H, for every j € {1,...,J}, there exists a
strongly positive self-adjoint A;(y) such that the quadratic function

(Vx) € Hy) hi(x), yV); y) = F(y)+(V £ (y) IxV) =y D)+ —|rx<f>—y<f>\|2j(y)

is a majorant function at yU) of the restriction of f to its j-th block.

Block-coordinate MM quadratic algorithm
Select /, € {1,...,J},

U0 = X8 — 0,4, (%) T2V, £ (5n),
(Jn) (7n)

Xn+1 = Xn

where 7, = {1,...,J} \ {Jn}.
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Selection of blocks

At each iteration n € N, j, € {1,...,J} can be chosen according to:

» the cyclic rule:
(VneN) j,—1=nmod(J).

» a quasi-cyclic rule:
There exists a constant K > J such that, for every n € N,

1, I} C {mreeordmika}

» a random rule:
For every n € N, j, is a realization of a random variable.

— The convergence properties of the algorithm may depend on the block
selection rule.
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Convergence properties

1 f:RN 5 Ris a coercive, differentiable function.
2 There exists (v,7) €]0, +o00[? such that (Vn € N) vId < Aj,(xn) 2 VId
3. There exists (8, 0) €]0, +-00[? such that (VvneN) § <6, <2 —0.

Sufficient descent property

There exists (p1, pt2) €]0, +oo[? such that

(Vn €N)  f(xn) = f(xp1) = pallxpe1 — xall* > 12|V f(30) 112,

Convergence theorem (in finite dimension and (quasi-)cyclic rule)

L. Vf(x,) — 0 and f(x,) \, f(Xx) where x is a critical point of f.
2. If f is convex, any sequential cluster point of (x,)nen is @ minimizer of f.
3. If f is strictly convex, then x, — X where X is the unique minimizer of f.
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Case of non differentiable function

Problem: Minimization of f : H — ]|—o00, +o0] where f = fi + f, with
f1 differentiable and f, non necessarily differentiable.

MM Algorithm: Xptr1 € Argmin h(x, xp)
xeH

Difficulty: How to majorize the non-differentiable function f, so that the
majorants remain easy to minimize?
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Case of non differentiable function

Problem: Minimization of f : H — ]|—o00, +o0] where f = fi + f, with
f1 differentiable and f, non necessarily differentiable.

MM Algorithm: Xptr1 € Argmin h(x, xp)

xXEH
Difficulty: How to majorize the non-differentiable function f, so that the
majorants remain easy to minimize?

— Two main approaches:

1. Use quadratic majorant functions for f (but, numerical issues at non

differentiability points)
~- |terative Reweighted Least Squares algorithms (e.g. Weiszfeld,

FOCUSS, IRLS, ...)
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Case of non differentiable function

Problem: Minimization of f : H — ]|—o00, +o0] where f = fi + f, with
f1 differentiable and f, non necessarily differentiable.

MM Algorithm: Xnt1 € Argmin h(x, x,) + fo(x)

xXEH
Difficulty: How to majorize the non-differentiable function f, so that the
majorants remain easy to minimize?

— Two main approaches:

1. Use quadratic majorant functions for f (but, numerical issues at non
differentiability points)
~- |terative Reweighted Least Squares algorithms (e.g. Weiszfeld,

FOCUSS, IRLS, ...)

2. Use quadratic majorant function for f{, and keep f, untouched
~+Variable metric forward-backward algorithm
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Proximity operator within a metric

Definition
Let f € o(H). Let A:H — H be a strongly positive self-adjoint operator.

For all x € H, prox, (x) is the proximity operator of f in (H, || - [[a), i.e.
the unique minimizer of

1
y = () + 5llx = vl

Remarks:

» If A= o~ tId, with o > 0, then prox,-114 f = ProX,s corresponds to
the usual proximity operator.

» We have

(vx € RM) prox £(x) = A_l/zproxfoA_l/z (AY2x).
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Let £ € Mo(RN). Assume that f is separable, i.e.

(vx = (Micizw €RY) F(x) = Z fi(x?)
and A is diagonal with (strictly) positive diagonal elements (a;);<;< -
Then, for every x € RV, prox ¢(x) = p where p = (p("))lg,-g/v c RN is

given by | |
(Vie{l,...,N}) pli) = prox, 1, (x).
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Variable metric forward-backward algorithm

Problem: Minimization of f : H — |—o00, +o0] where f = f; + f, with
f1 differentiable and f> convex non necessarily differentiable.

Assumption: For every y € H, there exists a strongly positive self-adjoint
operator A(y) : H — H such that the quadratic function

(W € 1) h(xy) = Aly) + (VA — ) + 5 lx ~ vl

Is @ majorant function of f; at y.

VMEFB algorithm

Xn+1 = PIOXp-1a 3 (X,, — HnA(Xn)_1Vf1(xn)) :

— (6p), acts as a stepsize parameter.
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Variable metric forward-backward algorithm

Link between MM and VMFB algorithms

Let 6, = 1. According to the definition of the proximity operator,

.1 _
o = argmin 3 x =+ AG) VA6 e + 200
Xe

: _ 1
= argerglim (x = Xn|A(Xn) 1Vfl(xn)>A(Xn) + §||X — X,,||§\(Xn) + fH(x)

: 1
—arguiin(x — x| Vi(x0) + 5llx ~ xll3) + )
Xec
= argmin h(x, x,) + f(x).
x€EH

Particular case: Assume that f; is S-Lipschitz differentiable. According to the
descent lemma, a possible choice for the metric is A(x,) = 87'Id. Then, VMFB
algorithm becomes equivalent to the usual forward-backward algorithm.
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Convergence properties

Assumptions

1. f:H— Ris a coercive, differentiable function.
f, € To(H) is continuous on its domain.
7. There exists (v,7) €]0, +00[? such that, (Vn € N) vId < A(x,) < 71d,

3. There exists (0, 0) €]0, +oo[? such that, (Yn € N) <6, <2 0.

Sufficient descent property

There exists (11, 2) €]0, +00[? such that

(Vn € N) £(xa) = (xnt1) = pallXnr1—xall*> = p2l VA (0)+1al|, with ry € 0f2(xn).

Convergence theorem (in finite dimension)

L. Vf(xn) 4+ rm — 0 and f(x,) \( f(Xx) where x is a critical point of f.
2. If fi is convex, any sequential cluster point of (x,),ecn is @ minimizer of f.

3. If f is strictly convex, then (x,), — X where X is a minimizer of f.
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