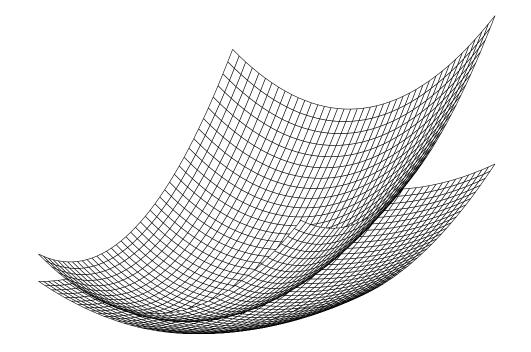
Data Sciences – ECP Large Scale and Distributed Optimization Part VI: Majorization-Minimization approaches

Emilie Chouzenoux and Jean-Christophe Pesquet

LIGM – CNRS UMR 8049 Univ. Paris-Est – ESIEE/ENPC {emilie.chouzenoux,jean-christophe.pesquet}@univ-paris-est.fr

Majorization-Minimization principle

When it is successful, the MM algorithm substitutes a simple optimization problem for a difficult optimization problem. - K. Lange



Majorization-Minimization principle

Majorization - Minimization (MM) (= optimization transfer = iterative majorization = auxiliary function method = surrogate minimization)

The MM principle consists of solving a minimization problem by alternating between two steps:

- 1. Majorize the criterion at current iterate with a majorant function,
- 2. Minimize the majorant function to define the next iterate.

Majorization-Minimization principle

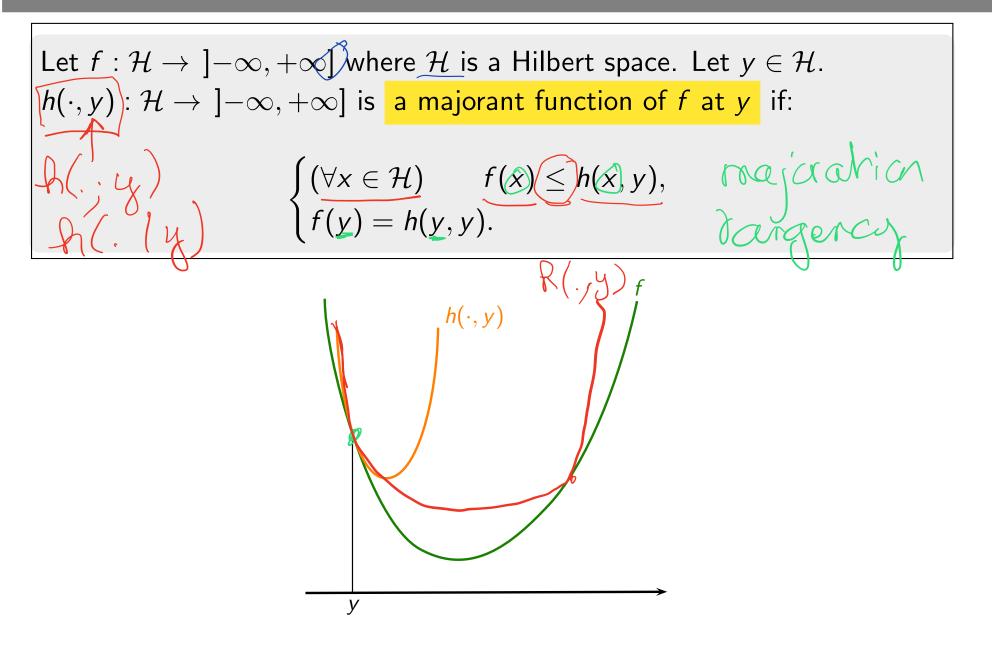
Majorization - **M**inimization (MM) (= optimization transfer = iterative majorization

= auxiliary function method = surrogate minimization)

The MM principle consists of solving a minimization problem by alternating between two steps:

- 1. Majorize the criterion at current iterate with a majorant function,
- 2. Minimize the majorant function to define the next iterate.
- \Rightarrow The construction of an MM algorithm thus requires to define
 - (i) a strategy for building majorant functions
 - (ii) a strategy for minimizing them.

Majorant function



Majorant function

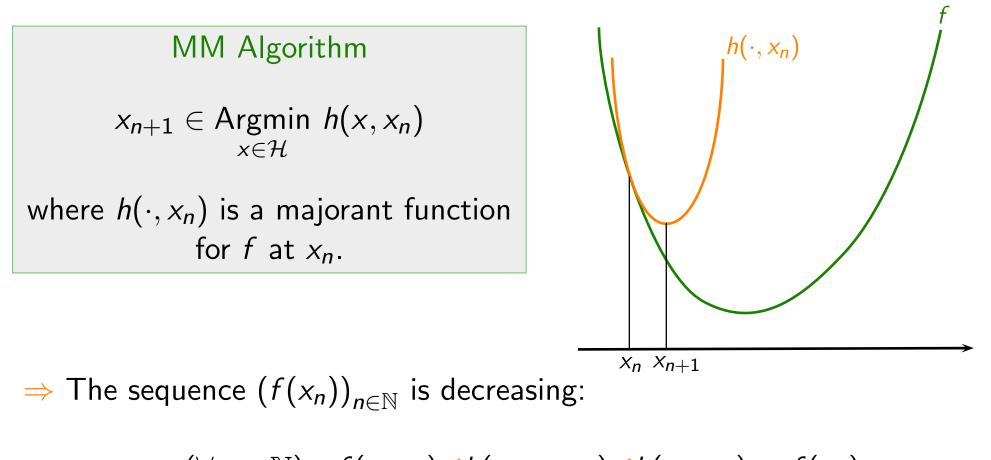
Properties

Let $f_1: \mathcal{H} \to [-\infty, +\infty]$ and $f_2: \mathcal{H} \to [-\infty, +\infty]$. Let $y \in \mathcal{H}$. Let $h_1(\cdot, y) : \mathcal{H} \to [-\infty, +\infty]$ be a majorant function of f_1 at y, and let $h_2(\cdot, y) : \mathcal{H} \to [-\infty, +\infty]$ be a majorant function of f_2 at y. Sum $h_1(\cdot, y) + h_2(\cdot, y)$ is a majorant function of $f_1 + f_2$ at y. Product If, for all $x \in \mathcal{H}$, $f_1(x) \ge 0$ and $f_2(x) \ge 0$, then $h_1(\cdot, y)h_2(\cdot, y)$ is a majorant function of f_1f_2 at y. Composition If $\phi : \mathbb{R} \to [-\infty, +\infty]$ is an increasing function, then $\phi(h_1(\cdot, y))$ is a majorant function of $\phi(f_1)$ at y.

5/40

Majorization-Minimization algorithm

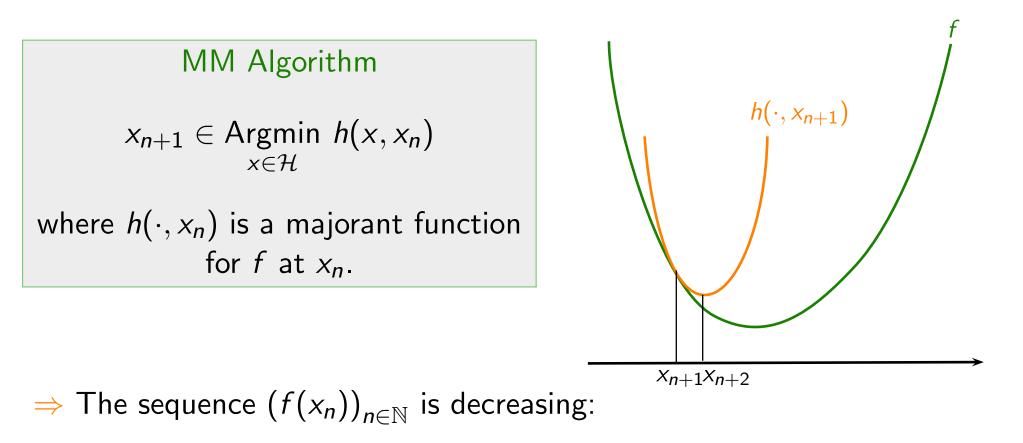
Problem: Minimization of function $f : \mathcal{H} \to]-\infty, +\infty]$.



$$(\forall n \in \mathbb{N}) \quad f(x_{n+1}) \leq h(x_{n+1}, x_n) \leq h(x_n, x_n) = f(x_n)$$

Majorization-Minimization algorithm

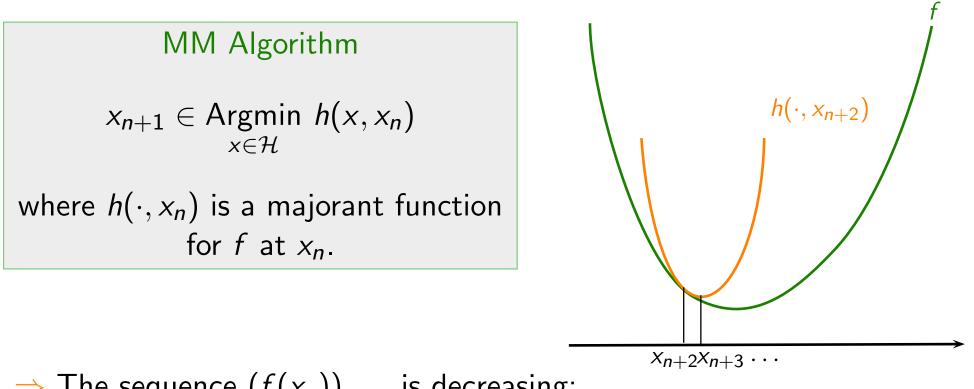
Problem: Minimization of function $f : \mathcal{H} \to]-\infty, +\infty]$.



$$(\forall n \in \mathbb{N}) \quad f(x_{n+1}) \leq h(x_{n+1}, x_n) \leq h(x_n, x_n) = f(x_n)$$

Majorization-Minimization algorithm

Problem: Minimization of function $f : \mathcal{H} \to]-\infty, +\infty]$.



 \Rightarrow The sequence $(f(x_n))_{n \in \mathbb{N}}$ is decreasing:

$$(\forall n \in \mathbb{N}) \quad f(x_{n+1}) \leq h(x_{n+1}, x_n) \leq h(x_n, x_n) = f(x_n)$$

Majorization techniques

Concave function

Let $f : \mathcal{H} \to [-\infty, +\infty[$ be a concave function. Let $y \in \mathcal{H}$ and $(-t) \in \partial(-f)(y)$. A majorant function for f at $y \in \mathcal{H}$ is

$$(\forall x \in \mathcal{H}) \quad h(x,y) = f(y) + \langle t | x - y \rangle.$$

Lipschitz differentiable function \prec

Let $f : \mathcal{H} \to]-\infty, +\infty]$ a β -Lipschitz differentiable function on \mathcal{H} . Then, for every $y \in \mathcal{H}$ and for every $\mu \in [\beta, +\infty[$, a majorant function for f at $y \in \mathcal{H}$ is \mathcal{H} is \mathcal{H}

(VX, yEPI) 8/40

Majorization techniques

Twice-differentiable function

Let $f : \mathbb{R}^N \to]-\infty, +\infty]$ be a twice differentiable function on \mathbb{R}^N with Hessian $\nabla^2 f$. Let $A \in \mathbb{R}^{N \times N}$ a positive semidefinite matrix such that, for every $x \in \mathbb{R}^N$, $A - \nabla^2 f(x)$ is positive semidefinite. Then, for every $y \in \mathbb{R}^N$, a majorant function for f at $y \in \mathbb{R}^N$ is

$$(\forall x \in \mathbb{R}^N) \quad h(x, y) = f(y) + \langle \nabla f(y) | x - y \rangle + \frac{1}{2} \underbrace{\langle x - y \mid A(x - y) \rangle}_{\|x - y\|_A^2}.$$

Jensen's inequality \bigwedge Sequence function \bigwedge Let ψ : $\mathbb{R} \to]-\infty, +\infty]$ be a convex function and let $\omega = (\omega^{(i)})_{1 \le i \le N} \in [0, +\infty[^N \text{ be such that } \sum_{i=1}^N \omega^{(i)} = 1. \text{ Then,}$ $(\forall (x^{(1)}, \dots, x^{(N)}) \in \mathcal{H}^N) \quad \psi \left(\sum_{i=1}^N \omega^{(i)} x^{(i)}\right) \le \sum_{i=1}^N \omega^{(i)} \psi \left(x^{(i)}\right).$

Whiteboard

Whiteboard

Exercises

Prove the following majorizing properties:

- 1. $(\forall (x,y) \in (\mathbb{R}^+)^2)(\forall q \in]0,1[) \quad x^q \leq qy^{q-1}x + (1-q)y^q$
- 2. $(\forall (x, y) \in (\mathbb{R}^{+*})^2) \quad \log x \le \frac{x}{y} + \log y 1$

3.
$$(\forall x \in \mathbb{R}^N) \quad \exp\left(\frac{1}{N}\sum_{i=1}^N x^{(i)}\right) \leq \frac{1}{N}\sum_{i=1}^N e^{x^{(i)}}$$

4. $(\forall x \in \mathbb{R}^N)(\forall y \in \mathbb{R}^N \setminus \{0\}) - ||x|| \leq -\frac{\langle x|y \rangle}{||y||}$

5.
$$(\forall (x,z) \in \mathbb{R}^2)(\forall (y,t) \in (\mathbb{R}^{+*})^2)$$
 $2xz \leq \frac{x^2t}{y} + \frac{z^2y}{t}$

Exercises

Solutions :

- 1. Use concavity of $x \mapsto x^q$ on \mathbb{R}^+ , for $q \in]0, 1[$.
- 2. Use concavity of $x \mapsto \log x$ on \mathbb{R}^{+*} .
- 3. Apply Jensen's inequality on the convex function exp.
- 4. Use concavity of $x \mapsto -||x||$.
- 5. Develop the inequality $(x/y z/t)^2 \ge 0$, for $(x, z) \in \mathbb{R}^2$ and $(y, t) \in (\mathbb{R}^{+*})^2$.

Majorization techniques

Even differentiable function

Let f be defined as

$$(\forall x \in \mathbb{R}) \qquad f(x) = \psi(|x|)$$
where
(i) ψ is differentiable on $]0, +\infty[$,
(ii) $\psi(\sqrt{\cdot})$ is concave on $]0, +\infty[$,
(iii) $(\forall x \in [0, +\infty[) \quad \dot{\psi}(x) \ge 0,$
(iv) $\lim_{x \to 0} \left(\omega(x) := \frac{\dot{\psi}(x)}{x} \right) \in \mathbb{R}.$
Then, for all $y \in \mathbb{R}$,
 $(\forall x \in \mathbb{R}) \quad f(x) \le f(y) + f(y)(x - y) + \frac{1}{2}\omega(|y|)(x - y)^2.$

Proof

According to Assumption (ii), $\varphi = \psi(\sqrt{\cdot})$ is concave on $]0, +\infty[$. Thus, using Assumption (i), for all $(u, v) \in]0, +\infty[^2, \varphi(u) \leq \varphi(v) + (u - v)\dot{\varphi}(v),$ with $\dot{\varphi}(v) = \frac{\dot{\psi}(\sqrt{v})}{2\sqrt{v}}$ (which is positive by Assumption (iii)). Then, for every $(x, y) \in (\mathbb{R}^*)^2$, $\varphi(x^2) \leq \varphi(y^2) + (x^2 - y^2)\omega(|y|).$

14/40

Using the equality $x^2 - y^2 = (x - y)^2 + 2y(x - y)$, we deduce that

$$arphi(x^2) \leq arphi(y^2) + \operatorname{sign}(y)\dot{\psi}(|y|)(x-y) + rac{1}{2}(x-y)^2\omega(|y|),$$

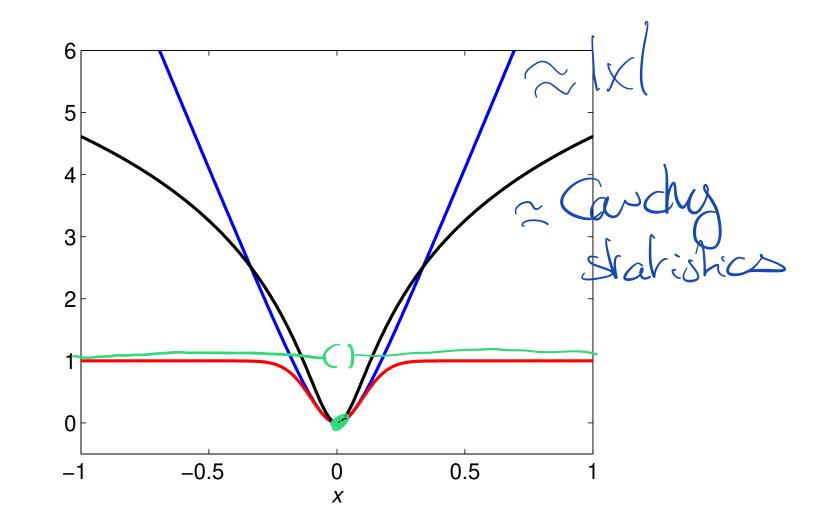
hence the result (by continuity, for x = 0 and/or y = 0 using Assumption (iv)).

E	xan	ples of functions f	
Je		f(x)	
0	PR	\mathcal{S}	$\omega(x)$
	•	$ x - \delta \log(x /\delta + 1)$	$(x +\delta)^{-1}$
	X	$\int x^2 \qquad \qquad \text{if } x < \delta$	$\int 2 \qquad \text{if } x < \delta$
	Convex	$\Big > 2\delta x - \delta^2$ otherwise	$2\delta/ x $ otherwise
	Ü	$\log(\cosh(x))$	tanh(x)/x
		$(1+x^2/\delta^2)^{\kappa/2}-1$	$(\kappa/\delta^2)(1+x^2/\delta^2)^{\kappa/2-1}$
		$\int 1 - \exp(-x^2/(2\delta^2))$	$(1/\delta^2)\exp(-x^2/(2\delta^2))$
	×	$x^2/(2\delta^2+x^2)$	$4\delta^2/(2\delta^2+x^2)^2$
	nve	$\int 1 - (1 - x^2/(6\delta^2))^3$ if $ x \le \sqrt{6}\delta$	$\int (1/\delta^2)(1-x^2/(6\delta^2))^2$ if $ x \le \sqrt{6}\delta$
	Nonconvex	1 otherwise	
	No	$tanh(x^2/(2\delta^2))$	$(1/\delta^2)(\cosh(x^2/(2\delta^2)))^{-2}$
		$\log(1+x^2/\delta^2)$	$2/(\delta^2 + x^2)$
	$(\lambda, \delta) \in]0, +\infty[^2, \kappa \in [1, 2]]$		

 $(\lambda,\delta)\in]0,+\infty[^2,\ \kappa\in [1,2]]$

15/40

Examples of functions *f*



 $f(x) = (1 + \frac{x^2}{\delta^2})^{1/2} - 1, \ f(x) = \log\left(1 + \frac{x^2}{\delta^2}\right), \ f(x) = 1 - \exp(-\frac{x^2}{2\delta^2}).$

16/40

MM quadratic algorithm

Problem: Minimization of a differentiable function $f : \mathcal{H} \to \mathbb{R}$.

Assumption: For every $y \in \mathcal{H}$, there exists a strongly positive self-adjoint operator A(y) such that the quadratic function

$$(\forall x \in \mathcal{H}) \quad h(x,y) = f(y) + \langle \nabla f(y) | x - y \rangle + \frac{1}{2} \| x - y \|_{\mathcal{A}(y)}^2$$

is a majorant function of f at y.

MM quadratic algorithm

$$x_{n+1} = x_n - \theta_n A(x_n)^{-1} \nabla f(x_n), \qquad \theta_n \in (0,2).$$

 $\Rightarrow (\theta_n)_n \text{ acts as a stepsize parameter.}$ For $\theta_n \equiv 1$, we recover the basic MM algorithm.

Convergence properties

Assumptions

- 1. $f : \mathcal{H} \to \mathbb{R}$ is a coercive, differentiable function.
- 2. There exists $(\underline{\nu}, \overline{\nu}) \in]0, +\infty[^2 \text{ such that } (\forall n \in \mathbb{N}) \underline{\nu} \text{Id} \preceq A(x_n) \preceq \overline{\nu} \text{Id},$
- 3. There exists $(\underline{\theta}, \overline{\theta}) \in]0, +\infty[^2 \text{ such that, } (\forall n \in \mathbb{N}) \underline{\theta} \leq \theta_n \leq 2 \overline{\theta}.$

Sufficient descent property

There exists $(\mu_1,\mu_2)\in]0,+\infty[^2$ such that

$$(orall n \in \mathbb{N}) \quad f(x_n) - f(x_{n+1}) \ge \mu_1 \|x_{n+1} - x_n\|^2 \ge \mu_2 \|
abla f(x_n)\|^2$$

Convergence theorem (in finite dimension)

- 1. $\nabla f(x_n) \to 0$ and $f(x_n) \searrow f(\widetilde{x})$ for some $\widetilde{x} \in \mathcal{H}$.
- 2. If f is continuously differentiable, any sequential cluster point of $(x_n)_{n \in \mathbb{N}}$ is a stationnary point of f.
- 3. If f is convex, any sequential cluster point of $(x_n)_{n \in \mathbb{N}}$ is a minimizer of f.
- 4. If f is strictly convex, then $x_n \to \hat{x}$ where \hat{x} is the unique minimizer of f.

Proof

Let $n \in \mathbb{N}$. According to the majoration property, $f(x_{n+1}) \leq h(x_{n+1}, x_n)$, with $h(x_{n+1}, x_n) = f(x_n) + \langle \nabla f(x_n) | x_{n+1} - x_n \rangle + \frac{1}{2} || x_{n+1} - x_n ||^2_{A(x_n)}$. Moreover, we have $\nabla f(x_n) + \theta_n^{-1} A(x_n)(x_{n+1} - x_n) = 0$. Therefore, on the one hand,

$$f(x_{n+1}) \leq f(x_n) - \left(heta_n^{-1} - rac{1}{2}
ight) \|x_{n+1} - x_n\|_{\mathcal{A}(x_n)}^2, \ \leq f(x_n) - \underbrace{\left(rac{1}{2 - \overline{ heta}} - rac{1}{2}
ight)
u \|x_{n+1} - x_n\|^2}_{\mu_1}.$$

On the other hand,

$$\|\nabla f(x_n)\| = \theta_n^{-1} \|A(x_n)(x_{n+1} - x_n)\|,$$

$$\leq \underbrace{\theta^{-1} \overline{\nu}}_{\sqrt{\mu_1/\mu_2}} \|x_{n+1} - x_n\|$$

Proof

Since f is coercive, $(f(x_n))_n$ is a decreasing bounded sequence so $(x_n)_n$ belongs to a compact subset of \mathcal{H} . Then, there exists a subsequence $(x_{n_k})_k$ which converges to some $\tilde{x} \in \mathcal{H}$.

By continuity of f, $f(x_{n_k}) \longrightarrow f(\widetilde{x})$ so that $f(x_n) \searrow f(\widetilde{x})$.

According to the descent properties, $\|\nabla f(x_n)\| \longrightarrow 0$ and $\|x_{n+1} - x_n\| \longrightarrow 0$.

If f is continuously differentiable, $\nabla f(\tilde{x}) = 0$, so that \tilde{x} is a critical point.

If f is convex, every critical point is a minimizer of f.

If f is strongly convex, the set of critical point is reduced to a singleton, equals to the unique minimizer of f.

Acceleration via subspace strategy

Problem: Minimization of differentiable function $f : \mathcal{H} \to \mathbb{R}$.

MM quadratic algorithm: $x_{n+1} \in \underset{x \in \mathcal{H}}{\operatorname{Argmin}} h(x, x_n)$

Difficulty: In the context of large scale optimization, the minimization of h over \mathcal{H} may become untractable.

Acceleration via subspace strategy

Problem: Minimization of differentiable function $f : \mathcal{H} \to \mathbb{R}$.

MM quadratic algorithm: $x_{n+1} \in \underset{x \in \mathcal{H}}{\operatorname{Argmin}} h(x, x_n)$

Difficulty: In the context of large scale optimization, the minimization of h over \mathcal{H} may become untractable.

 \Rightarrow Subspace strategy: Instead of minimizing *h* over the whole set \mathcal{H} , restrict the minimization space to a subspace spanned by a small number of vectors.

 $\begin{array}{ll} \text{MM quadratic subspace algorithm:} & x_{n+1} \in & \text{Argmin} & h(x,x_n), \\ & x \in \text{span} \left(d_n^1, d_n^2, \ldots, d_n^{M_n} \right) \\ \text{where, for every } n \in \mathbb{N}, \ M_n \geq 1, \ \text{and} \ D_n = \left[d_n^1 \mid d_n^2 \mid \ldots \mid d_n^{M_n} \right] \in \mathcal{H}^{M_n}. \end{array}$

Choices for the subspace

Subspace name	Set of directions D_n	
Memory gradient	$\left[-\nabla f(x_n) \mid d_{n-1}\right]$	
Supermemory gradient	$\left[-\nabla f(x_n) \mid d_{n-1} \mid \ldots \mid d_{n-m} \right]$	
Gradient subspace	$\left \left[-\nabla f(x_n) \right - \nabla f(x_{n-1}) \right \ldots \left -\nabla f(x_{n-m}) \right] \right $	
Nemirovski subspace	$\left[-\nabla f(x_n) x_n - x_0 \sum_{i=0}^n \omega_i \nabla f(x_i)\right]$	
Sequential subspace	$\left[\left[-\nabla f(x_n) \mid x_n - x_0 \mid \sum_{i=0}^n \omega_i \nabla f(x_i) \mid d_{n-1} \mid \ldots \mid d_{n-m} \right] \right]$	
Quasi-Newton subspace	$\left \left[-\nabla f(x_n) \left \delta_{n-1} \right \ldots \left \delta_{n-m} \right d_{n-1} \right \ldots \left d_{n-m} \right] \right.$	

where, for all $n \ge 0$, $(\omega_i)_{1 \le i \le n} \in \mathbb{R}^n$, $d_n = x_{n+1} - x_n$ and $\delta_n = \nabla f(x_{n+1}) - \nabla f(x_n)$.

22/40

MM quadratic subspace algorithm

Problem: Minimization of $f : \mathcal{H} \to \mathbb{R}$ where f is differentiable.

Assumption: For all $y \in \mathcal{H}$, there exists a strongly positive self-adjoint operator A(y) such that the quadratic function

$$(\forall x \in \mathcal{H}) \quad h(x,y) = f(y) + \langle \nabla f(y) | x - y \rangle + \frac{1}{2} \| x - y \|_{\mathcal{A}(y)}^2$$

1

is a majorant function of f at y.

 $\begin{array}{l} \mathsf{MM} \ \mathsf{quadratic} \ \mathsf{subspace} \ \mathsf{algorithm} \\ \mathsf{Choose} \ D_n \in \mathcal{H}^{M_n}, \\ u_n \in \mathop{\mathrm{Argmin}}_{u \in \mathbb{R}^{M_n}} h\left(x_n + \sum_{m=1}^{M_n} u^{(m)} d_n^m, x_n\right), \\ x_{n+1} = x_n + \sum_{m=1}^{M_n} u_n^{(m)} d_n^m. \end{array}$

 \Rightarrow **3MG algorithm** obtained when $(D_n)_n$ is the memory gradient subspace.

Convergence properties

Assumptions

- **1**. $f : \mathcal{H} \to \mathbb{R}$ is a coercive, differentiable function.
- 2. There exists $(\underline{\nu}, \overline{\nu}) \in]0, +\infty[^2 \text{ such that } (\forall n \in \mathbb{N}) \underline{\nu} \mathrm{Id} \preceq A(x_n) \preceq \overline{\nu} \mathrm{Id},$
- 3. There exists $(\gamma_0, \gamma_1) \in]0, +\infty[^2$ such that

$$(orall n \in \mathbb{N}) \quad \left\langle
abla f(x_n) | d_n^1
ight
angle \leq -\gamma_0 \|
abla f(x_n) \|^2 ext{ and } \| d_n^1 \| \leq \gamma_1 \|
abla f(x_n) \|.$$

Sufficient descent property

There exists
$$(\mu_1,\mu_2)\in]0,+\infty[^2$$
 such that

$$(\forall n \in \mathbb{N}) \quad f(x_n) - f(x_{n+1}) \ge \mu_1 \|x_{n+1} - x_n\|^2 \ge \mu_2 \|\nabla f(x_n)\|^2.$$

Convergence theorem (in finite dimension)

1. $\nabla f(x_n) \to 0$ and $f(x_n) \searrow f(\tilde{x})$ where \tilde{x} is a critical point of f.

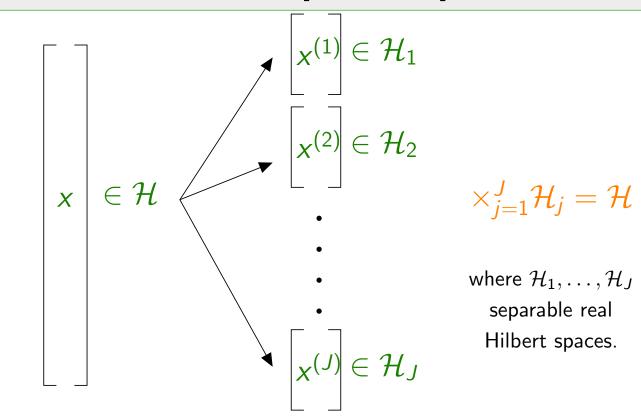
- 2. If f is convex, any sequential cluster point of $(x_n)_{n \in \mathbb{N}}$ is a minimizer of f.
- 3. If f is strictly convex, then $x_n \to \hat{x}$ where \hat{x} is the unique minimizer of f.

Whiteboard

Whiteboard

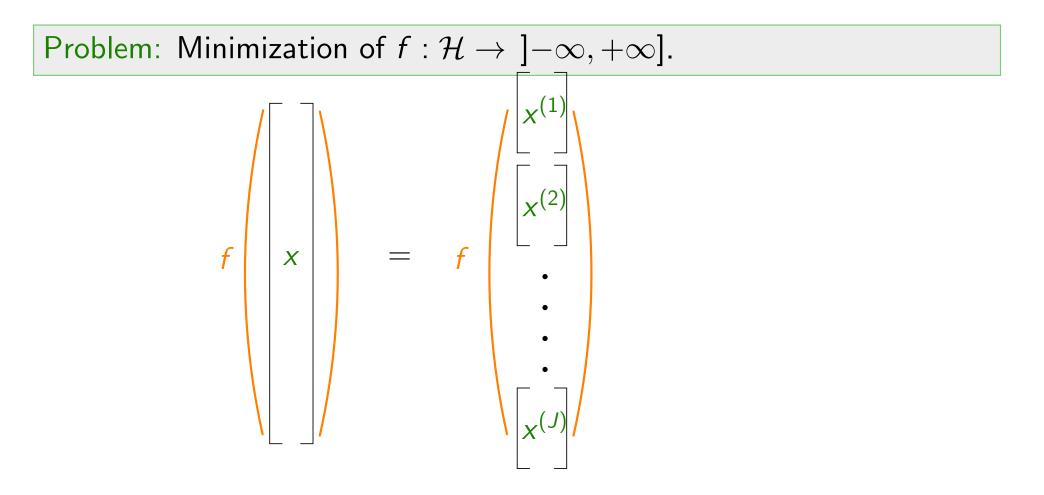
Problem: Minimization of $f : \mathcal{H} \to]-\infty, +\infty]$.

Problem: Minimization of $f : \mathcal{H} \to]-\infty, +\infty]$.



27/40





⇒ Block-coordinate strategy: Instead of updating the whole vector x at iteration $n \in \mathbb{N}$, restrict the update to a block $j_n \in \{1, \ldots, J\}$.

Block-coordinate MM quadratic algorithm

Problem: Minimization of $f : \mathcal{H} \to \mathbb{R}$ where f is differentiable.

Assumption: For every $y \in \mathcal{H}$, for every $j \in \{1, ..., J\}$, there exists a strongly positive self-adjoint $A_j(y)$ such that the quadratic function

$$(\forall x^{(j)} \in \mathcal{H}_j) h_j(x^{(j)}, y^{(j)}; y) = f(y) + \langle \nabla_j f(y) | x^{(j)} - y^{(j)} \rangle + \frac{1}{2} \| x^{(j)} - y^{(j)} \|_{A_j(y)}^2$$

is a majorant function at $y^{(j)}$ of the restriction of f to its j-th block.

Block-coordinate MM quadratic algorithm Select $j_n \in \{1, ..., J\}$, $x_{n+1}^{(j_n)} = x_n^{(j_n)} - \theta_n A_{j_n}(x_n)^{-1} \nabla_{j_n} f(x_n),$ $x_{n+1}^{(\bar{j}_n)} = x_n^{(\bar{j}_n)},$

where $\overline{\jmath}_n = \{1, \ldots, J\} \setminus \{j_n\}.$

Selection of blocks

At each iteration $n \in \mathbb{N}$, $j_n \in \{1, \ldots, J\}$ can be chosen according to:

the cyclic rule:

$$(\forall n \in \mathbb{N}) \quad j_n - 1 = n \mod (J).$$

► a quasi-cyclic rule: There exists a constant $K \ge J$ such that, for every $n \in \mathbb{N}$,

$$\{1,\ldots,J\}\subset\{j_n,\ldots,j_{n+K-1}\}.$$

a random rule:

For every $n \in \mathbb{N}$, j_n is a realization of a random variable.

 \Rightarrow The convergence properties of the algorithm may depend on the block selection rule.

Convergence properties

Assumptions

1. $f : \mathbb{R}^N \to \mathbb{R}$ is a coercive, differentiable function. 2. There exists $(\underline{\nu}, \overline{\nu}) \in]0, +\infty[^2$ such that $(\forall n \in \mathbb{N}) \underline{\nu} \mathrm{Id} \preceq A_{j_n}(x_n) \preceq \overline{\nu} \mathrm{Id}$ 3. There exists $(\underline{\theta}, \overline{\theta}) \in]0, +\infty[^2$ such that $(\forall n \in \mathbb{N}) \underline{\theta} \leq \theta_n \leq 2 - \overline{\theta}$.

Sufficient descent property

There exists $(\mu_1, \mu_2) \in]0, +\infty[^2$ such that

$$(\forall n \in \mathbb{N}) \quad f(x_n) - f(x_{n+1}) \ge \mu_1 \|x_{n+1} - x_n\|^2 \ge \mu_2 \|\nabla_{j_n} f(x_n)\|^2.$$

Convergence theorem (in finite dimension and (quasi-)cyclic rule)

∇f(x_n) → 0 and f(x_n) \sqrt{f(x)} where x̃ is a critical point of f.
 If f is convex, any sequential cluster point of (x_n)_{n∈N} is a minimizer of f.
 If f is strictly convex, then x_n → x̂ where x̂ is the unique minimizer of f.

Case of non differentiable function

Problem: Minimization of $f : \mathcal{H} \to]-\infty, +\infty]$ where $f = f_1 + f_2$ with f_1 differentiable and f_2 non necessarily differentiable.

MM Algorithm:
$$x_{n+1} \in \underset{x \in \mathcal{H}}{\operatorname{Argmin}} h(x, x_n)$$

Difficulty: How to majorize the non-differentiable function f, so that the majorants remain easy to minimize?

Case of non differentiable function

Problem: Minimization of $f : \mathcal{H} \to]-\infty, +\infty]$ where $f = f_1 + f_2$ with f_1 differentiable and f_2 non necessarily differentiable.

MM Algorithm:
$$x_{n+1} \in \underset{x \in \mathcal{H}}{\operatorname{Argmin}} h(x, x_n)$$

Difficulty: How to majorize the non-differentiable function *f*, so that the majorants remain easy to minimize?

 \Rightarrow Two main approaches:

Use quadratic majorant functions for f (but, numerical issues at non differentiability points)

 Iterative Reweighted Least Squares algorithms (e.g. Weiszfeld, FOCUSS, IRLS, ...)

Case of non differentiable function

Problem: Minimization of $f : \mathcal{H} \to]-\infty, +\infty]$ where $f = f_1 + f_2$ with f_1 differentiable and f_2 non necessarily differentiable.

Algorithm:
$$x_{n+1} \in \underset{x \in \mathcal{H}}{\operatorname{Argmin}} h(x, x_n) + f_2(x)$$

Difficulty: How to majorize the non-differentiable function f, so that the majorants remain easy to minimize?

 \Rightarrow Two main approaches:

MM

 Use quadratic majorant functions for f (but, numerical issues at non differentiability points)
 Iterative Reweighted Least Squares algorithms (e.g. Weiszfeld, FOCUSS, IRLS, ...)

2. Use quadratic majorant function for f_1 , and keep f_2 untouched \rightsquigarrow Variable metric forward-backward algorithm

Proximity operator within a metric

Definition

Let $f \in \Gamma_0(\mathcal{H})$. Let $A : \mathcal{H} \to \mathcal{H}$ be a strongly positive self-adjoint operator. For all $x \in \mathcal{H}$, $\operatorname{prox}_{A,f}(x)$ is the proximity operator of f in $(\mathcal{H}, \| \cdot \|_A)$, i.e. the unique minimizer of

$$y \mapsto f(y) + \frac{1}{2} \|x - y\|_{\mathcal{A}}^2.$$

Remarks:

- ▶ If $A = \alpha^{-1}$ Id, with $\alpha > 0$, then $\operatorname{prox}_{\alpha^{-1}$ Id, $f} \equiv \operatorname{prox}_{\alpha f}$ corresponds to the usual proximity operator.
- We have

$$(\forall x \in \mathbb{R}^N) \quad \operatorname{prox}_{A,f}(x) = A^{-1/2} \operatorname{prox}_{f \circ A^{-1/2}} (A^{1/2}x).$$

Property

Let $f \in \Gamma_0(\mathbb{R}^N)$. Assume that f is separable, i.e.

$$\left(orall x = (x^{(i)})_{1 \leq i \leq N} \in \mathbb{R}^N
ight) \quad f(x) = \sum_{i=1}^N f_i(x^{(i)})$$

and A is diagonal with (strictly) positive diagonal elements $(a_i)_{1 \le i \le N}$. Then, for every $x \in \mathbb{R}^N$, $\operatorname{prox}_{A,f}(x) = p$ where $p = (p^{(i)})_{1 \le i \le N} \in \mathbb{R}^N$ is

given by

$$(\forall i \in \{1, \ldots, N\}) \quad p^{(i)} = \operatorname{prox}_{a_i^{-1}f_i}(x^{(i)}).$$

Variable metric forward-backward algorithm

Problem: Minimization of $f : \mathcal{H} \to]-\infty, +\infty]$ where $f = f_1 + f_2$ with f_1 differentiable and f_2 convex non necessarily differentiable.

Assumption: For every $y \in \mathcal{H}$, there exists a strongly positive self-adjoint operator $A(y) : \mathcal{H} \to \mathcal{H}$ such that the quadratic function

$$(\forall x \in \mathcal{H}) \quad h(x,y) = f_1(y) + \langle \nabla f_1(y) | x - y \rangle + \frac{1}{2} \| x - y \|_{\mathcal{A}(y)}^2$$

is a majorant function of f_1 at y.

VMFB algorithm

$$x_{n+1} = \operatorname{prox}_{\theta_n^{-1} A(x_n), f_2} \left(x_n - \theta_n A(x_n)^{-1} \nabla f_1(x_n) \right).$$

 $\Rightarrow (\theta_n)_n$ acts as a stepsize parameter.

Variable metric forward-backward algorithm

Link between MM and VMFB algorithms

Let $\theta_n \equiv 1$. According to the definition of the proximity operator,

$$\begin{aligned} x_{n+1} &= \underset{x \in \mathcal{H}}{\operatorname{argmin}} \quad \frac{1}{2} \| x - x_n + A(x_n)^{-1} \nabla f_1(x_n) \|_{A(x_n)}^2 + f_2(x) \\ &= \underset{x \in \mathcal{H}}{\operatorname{argmin}} \quad \left\langle x - x_n | A(x_n)^{-1} \nabla f_1(x_n) \right\rangle_{A(x_n)} + \frac{1}{2} \| x - x_n \|_{A(x_n)}^2 + f_2(x) \\ &= \underset{x \in \mathcal{H}}{\operatorname{argmin}} \quad \left\langle x - x_n | \nabla f_1(x_n) \right\rangle + \frac{1}{2} \| x - x_n \|_{A(x_n)}^2 + f_2(x) \\ &= \underset{x \in \mathcal{H}}{\operatorname{argmin}} \quad h(x, x_n) + f_2(x). \end{aligned}$$

Particular case: Assume that f_1 is β -Lipschitz differentiable. According to the descent lemma, a possible choice for the metric is $A(x_n) \equiv \beta^{-1}$ Id. Then, VMFB algorithm becomes equivalent to the usual forward-backward algorithm.

Convergence properties

Assumptions

- 1. $f_1 : \mathcal{H} \to \mathbb{R}$ is a coercive, differentiable function. $f_2 \in \Gamma_0(\mathcal{H})$ is continuous on its domain.
- 2. There exists $(\underline{\nu}, \overline{\nu}) \in]0, +\infty[^2 \text{ such that, } (\forall n \in \mathbb{N}) \underline{\nu} \text{Id} \preceq A(x_n) \preceq \overline{\nu} \text{Id},$
- 3. There exists $(\underline{\theta}, \overline{\theta}) \in]0, +\infty[^2 \text{ such that, } (\forall n \in \mathbb{N}) \underline{\theta} \leq \theta_n \leq 2 \overline{\theta}.$

Sufficient descent property

There exists
$$(\mu_1, \mu_2) \in]0, +\infty[^2$$
 such that

$$(\forall n \in \mathbb{N}) \ f(x_n) - f(x_{n+1}) \ge \mu_1 \|x_{n+1} - x_n\|^2 \ge \mu_2 \|\nabla f_1(x_n) + r_n\|^2, \text{ with } r_n \in \partial f_2(x_n).$$

Convergence theorem (in finite dimension)

- 1. $\nabla f_1(x_n) + r_n \to 0$ and $f(x_n) \searrow f(\widetilde{x})$ where \widetilde{x} is a critical point of f.
- 2. If f_1 is convex, any sequential cluster point of $(x_n)_{n \in \mathbb{N}}$ is a minimizer of f.
- 3. If f is strictly convex, then $(x_n)_n \to \hat{x}$ where \hat{x} is a minimizer of f.