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Majorization-Minimization principle

When it is successful, the MM algorithm substitutes a simple optimization

problem for a difficult optimization problem. - K. Lange
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Majorization-Minimization principle

Majorization - Minimization (MM)
(= optimization transfer = iterative majorization

= auxiliary function method = surrogate minimization)

The MM principle consists of solving a minimization problem by
alternating between two steps:

1. Majorize the criterion at current iterate with a majorant function ,

2. Minimize the majorant function to define the next iterate.
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Majorization-Minimization principle

Majorization - Minimization (MM)
(= optimization transfer = iterative majorization

= auxiliary function method = surrogate minimization)

The MM principle consists of solving a minimization problem by
alternating between two steps:

1. Majorize the criterion at current iterate with a majorant function ,

2. Minimize the majorant function to define the next iterate.

→ The construction of an MM algorithm thus requires to define

(i) a strategy for building majorant functions

(ii) a strategy for minimizing them.
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Majorant function

Let f : H → ]−∞,+∞] where H is a Hilbert space. Let y ∈ H.

h(·, y) : H → ]−∞,+∞] is a majorant function of f at y if:

{
(ցx ∈ H) f (x) ≤ h(x , y),

f (y) = h(y , y).

f

y

h(·, y)

0
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Majorant function

Properties

Let f1 : H → ]−∞,+∞] and f2 : H → ]−∞,+∞]. Let y ∈ H.
Let h1(·, y) : H → ]−∞,+∞] be a majorant function of f1 at y ,
and let h2(·, y) : H → ]−∞,+∞] be a majorant function of f2 at y .

Sum
h1(·, y) + h2(·, y) is a majorant function of f1 + f2 at y .

Product
If, for all x ∈ H, f1(x) ≥ 0 and f2(x) ≥ 0, then
h1(·, y)h2(·, y) is a majorant function of f1f2 at y .

Composition
If ω : R → ]−∞,+∞] is an increasing function, then
ω(h1(·, y)) is a majorant function of ω(f1) at y .



6/40

Majorization-Minimization algorithm

Problem: Minimization of function f : H → ]−∞,+∞].

MM Algorithm

xn+1 ∈ Argmin
x∈H

h(x , xn)

where h(·, xn) is a majorant function
for f at xn.

f

xn xn+1

h(·, xn)

→ The sequence (f (xn))n∈N is decreasing:

(ցn ∈ N) f (xn+1)≤
M
h(xn+1, xn)≤

M
h(xn, xn) = f (xn)
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Majorization-Minimization algorithm

Problem: Minimization of function f : H → ]−∞,+∞].

MM Algorithm

xn+1 ∈ Argmin
x∈H

h(x , xn)

where h(·, xn) is a majorant function
for f at xn.

f

xn+1xn+2

h(·, xn+1)

→ The sequence (f (xn))n∈N is decreasing:

(ցn ∈ N) f (xn+1)≤
M
h(xn+1, xn)≤

M
h(xn, xn) = f (xn)
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Majorization-Minimization algorithm

Problem: Minimization of function f : H → ]−∞,+∞].

MM Algorithm

xn+1 ∈ Argmin
x∈H

h(x , xn)

where h(·, xn) is a majorant function
for f at xn.

f

xn+2xn+3 · · ·

h(·, xn+2)

→ The sequence (f (xn))n∈N is decreasing:

(ցn ∈ N) f (xn+1)≤
M
h(xn+1, xn)≤

M
h(xn, xn) = f (xn)



7/40

Majorization techniques

Concave function

Let f : H → [−∞,+∞[ be a concave function. Let y ∈ H and
(−t) ∈ ∂(−f )(y). A majorant function for f at y ∈ H is

(ցx ∈ H) h(x , y) = f (y) + ⇒t|x − y〉 .

Lipschitz differentiable function

Let f : H → ]−∞,+∞] a β-Lipschitz differentiable function on H. Then,
for every y ∈ H and for every µ ∈ [β,+∞[, a majorant function for f at
y ∈ H is

(ցx ∈ H) h(x , y) = f (y) + ⇒∇f (y)|x − y〉+
µ

2
‖x − y‖2.

a
Ï

Descent lemma
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Majorization techniques

Twice-differentiable function

Let f : RN → ]−∞,+∞] be a twice differentiable function on RN with Hessian
∇2f . Let A ∈ RN×N a positive semidefinite matrix such that, for every x ∈ RN ,
A−∇2f (x) is positive semidefinite. Then, for every y ∈ RN ,
a majorant function for f at y ∈ RN is

(ցx ∈ R
N) h(x , y) = f (y) + ⇒∇f (y)|x − y〉+

1

2
⇒x − y | A(x − y)〉︸ ︷︷ ︸

‖x − y‖2A

.

Jensen’s inequality

Let ψ : R → ]−∞,+∞] be a convex function and let ω = (ω(i))1≤i≤N ∈
[0,+∞[N be such that

∑N
i=1 ω

(i) = 1. Then,

(
ց(x (1), . . . , x (N)) ∈ HN

)
ψ

(
N∑

i=1

ω(i)x (i)

)

≤
N∑

i=1

ω(i)ψ
(
x (i)
)
.

Vxgen 1186 D8 y 1 β y

A

separable function
O
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Whiteboard
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Whiteboard
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Exercises

Prove the following majorizing properties:

1. (ց(x , y) ∈ (R+)2)(ցq ∈]0, 1[) xq ≤ qyq−1x + (1− q)yq

2. (ց(x , y) ∈ (R+∗)2) log x ≤ x
y + log y − 1

3. (ցx ∈ RN) exp
(

1
N

∑N
i=1 x

(i)
)
≤ 1

N

∑N
i=1 e

x(i)

4. (ցx ∈ RN)(ցy ∈ RN\ {0}) − ‖x‖ ≤ − 〈x |y〉
‖y‖

5. (ց(x , z) ∈ R2)(ց(y , t) ∈ (R+∗)2) 2xz ≤ x2t
y + z2y

t

DOD
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Exercises

Solutions :

1. Use concavity of x -→ xq on R+, for q ∈]0, 1[.
2. Use concavity of x -→ log x on R+∗.

3. Apply Jensen’s inequality on the convex function exp.

4. Use concavity of x -→ −‖x‖.
5. Develop the inequality (x/y − z/t)2 ≥ 0, for (x , z) ∈ R2 and

(y , t) ∈ (R+∗)2.
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Majorization techniques

Even differentiable function

Let f be defined as

(ցx ∈ R) f (x) = ψ(|x |)

where
(i) ψ is differentiable on ]0,+∞[,

(ii) ψ(
√
·) is concave on ]0,+∞[,

(iii) (ցx ∈ [0,+∞[) ψ̇(x) ≥ 0,

(iv) limx→0
x>0

(
ω(x) := ψ̇(x)

x

)
∈ R.

h(.,y)

f

y

Then, for all y ∈ R,

(ցx ∈ R) f (x) ≤ f (y) + ḟ (y)(x − y) +
1

2
ω(|y |)(x − y)2.

0

0411191
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Proof

According to Assumption (ii), ϕ = ψ(
√
·) is concave on ]0,+∞[. Thus,

using Assumption (i), for all (u, v) ∈]0,+∞[2, ϕ(u) ≤ ϕ(v) + (u− v)ϕ̇(v),

with ϕ̇(v) = ψ̇(
√
v)

2
√
v

(which is positive by Assumption (iii)). Then, for every

(x , y) ∈ (R∗)2,
ϕ(x2) ≤ ϕ(y2) + (x2 − y2)ω(|y |).

Using the equality x2 − y2 = (x − y)2 + 2y(x − y), we deduce that

ϕ(x2) ≤ ϕ(y2) + sign(y)ψ̇(|y |)(x − y) +
1

2
(x − y)2ω(|y |),

hence the result (by continuity, for x = 0 and/or y = 0 using Assumption
(iv)).

04
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Examples of functions f

f (x) ω(x)

|x |− δ log(|x |/δ + 1) (|x |+ δ)−1

{

x
2 if |x | < δ

2δ|x |− δ2 otherwise

{

2 if |x | < δ

2δ/|x | otherwise

C
on

ve
x

log(cosh(x)) tanh(x)/x

(1 + x
2/δ2)κ/2 − 1 (κ/δ2)(1 + x

2/δ2)κ/2−1

1− exp(−x
2/(2δ2)) (1/δ2) exp(−x

2/(2δ2))

x
2/(2δ2 + x

2) 4δ2/(2δ2 + x
2)2

{

1− (1− x
2/(6δ2))3 if |x | ≤

√
6δ

1 otherwise

{

(1/δ2)(1− x
2/(6δ2))2 if |x | ≤

√
6δ

0 otherwise

N
on

co
nv

ex

tanh(x2/(2δ2)) (1/δ2)(cosh(x2/(2δ2)))−2

log(1 + x
2/δ2) 2/(δ2 + x

2)

(λ, δ) ∈]0,+∞[2, κ ∈ [1, 2]

derivable
approximatif
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Examples of functions f

−1 −0.5 0 0.5 1

0

1

2

3

4

5

6

x

f (x) = (1 + x2

δ2 )
1/2 − 1, f (x) = log

(
1 + x2

δ2

)
, f (x) = 1− exp(− x2

2δ2 ).

W

Cauchy
statistics

t
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MM quadratic algorithm

Problem: Minimization of a differentiable function f : H → R.

Assumption: For every y ∈ H, there exists a strongly positive self-adjoint
operator A(y) such that the quadratic function

(ցx ∈ H) h(x , y) = f (y) + ⇒∇f (y)|x − y〉+
1

2
‖x − y‖2A(y)

is a majorant function of f at y .

MM quadratic algorithm

xn+1 = xn − ϕnA(xn)
−1∇f (xn), ϕn ∈ (0, 2).

→ (ϕn)n acts as a stepsize parameter.
For ϕn ≡ 1, we recover the basic MM algorithm.
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Convergence properties

Assumptions

1. f : H → R is a coercive, differentiable function.
2. There exists (ν, ν) ∈]0,+∞[2 such that (ցn ∈ N) νId 0 A(xn) 0 νId,
3. There exists (ϕ, ϕ) ∈]0,+∞[2 such that, (ցn ∈ N) ϕ ≤ ϕn ≤ 2− ϕ.

Sufficient descent property

There exists (µ1, µ2) ∈]0,+∞[2 such that

(ցn ∈ N) f (xn)− f (xn+1) ≥ µ1‖xn+1 − xn‖2 ≥ µ2‖∇f (xn)‖2.

Convergence theorem (in finite dimension)

1. ∇f (xn) → 0 and f (xn) ∞ f (x̃) for some x̃ ∈ H.
2. If f is continuously differentiable, any sequential cluster point of (xn)n∈N

is a stationnary point of f .
3. If f is convex, any sequential cluster point of (xn)n∈N is a minimizer of f .
4. If f is strictly convex, then xn → x̂ where x̂ is the unique minimizer of f .
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Proof

Let n ∈ N. According to the majoration property, f (xn+1) ≤ h(xn+1, xn),
with h(xn+1, xn) = f (xn) + ⇒∇f (xn)|xn+1 − xn〉+ 1

2‖xn+1 − xn‖2A(xn).
Moreover, we have ∇f (xn) + ϕ−1

n A(xn)(xn+1 − xn) = 0. Therefore, on the
one hand,

f (xn+1) ≤ f (xn)−
(
ϕ−1
n −

1

2

)
‖xn+1 − xn‖2A(xn),

≤ f (xn)−
(

1

2− ϕ
−

1

2

)
ν

︸ ︷︷ ︸
µ1

‖xn+1 − xn‖2.

On the other hand,

‖∇f (xn)‖ = ϕ−1
n ‖A(xn)(xn+1 − xn)‖,

≤ ϕ−1 ν︸ ︷︷ ︸√
µ1/µ2

‖xn+1 − xn‖



20/40

Proof

Since f is coercive, (f (xn))n is a decreasing bounded sequence so (xn)n
belongs to a compact subset of H. Then, there exists a subsequence (xnk )k
which converges to some x̃ ∈ H.

By continuity of f , f (xnk ) −→ f (x̃) so that f (xn) ∞ f (x̃).

According to the descent properties, ‖∇f (xn)‖ −→ 0 and
‖xn+1 − xn‖ −→ 0.

If f is continuously differentiable, ∇f (x̃) = 0, so that x̃ is a critical point.

If f is convex, every critical point is a minimizer of f .

If f is strongly convex, the set of critical point is reduced to a singleton,
equals to the unique minimizer of f .
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Acceleration via subspace strategy

Problem: Minimization of differentiable function f : H → R.

MM quadratic algorithm: xn+1 ∈ Argmin
x∈H

h(x , xn)

Difficulty: In the context of large scale optimization, the minimization of
h over H may become untractable.



21/40

Acceleration via subspace strategy

Problem: Minimization of differentiable function f : H → R.

MM quadratic algorithm: xn+1 ∈ Argmin
x∈H

h(x , xn)

Difficulty: In the context of large scale optimization, the minimization of
h over H may become untractable.

→ Subspace strategy: Instead of minimizing h over the whole set H,
restrict the minimization space to a subspace spanned by a small number
of vectors.

MM quadratic subspace algorithm: xn+1 ∈ Argmin
x∈span(d1

n ,d
2
n ,...,d

Mn
n )

h(x , xn),

where, for every n ∈ N, Mn ≥ 1, and Dn =
[
d1
n | d2

n | . . . | dMn
n

]
∈ HMn .
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Choices for the subspace

Subspace name Set of directions Dn

Memory gradient [−∇f (xn) | dn−1]

Supermemory gradient [−∇f (xn) | dn−1 | . . . | dn−m]

Gradient subspace [−∇f (xn) | −∇f (xn−1) | . . . | −∇f (xn−m)]

Nemirovski subspace
[
−∇f (xn) | xn − x0 |

∑n
i=0 ωi∇f (xi )

]

Sequential subspace
[
−∇f (xn) | xn − x0 |

∑n
i=0 ωi∇f (xi ) | dn−1 | . . . | dn−m

]

Quasi-Newton subspace [−∇f (xn) | δn−1 | . . . |δn−m | dn−1 | . . . | dn−m]

where, for all n ≥ 0, (ωi )1≤i≤n ∈ Rn, dn = xn+1− xn and δn = ∇f (xn+1)−∇f (xn).
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MM quadratic subspace algorithm

Problem: Minimization of f : H → R where f is differentiable.

Assumption: For all y ∈ H, there exists a strongly positive self-adjoint
operator A(y) such that the quadratic function

(ցx ∈ H) h(x , y) = f (y) + ⇒∇f (y)|x − y〉+
1

2
‖x − y‖2A(y)

is a majorant function of f at y .

MM quadratic subspace algorithm

Choose Dn ∈ HMn ,

un ∈ Argmin
u∈RMn

h
(
xn +

∑Mn

m=1 u
(m)dm

n , xn
)
,

xn+1 = xn +
∑Mn

m=1 u
(m)
n dm

n .

→ 3MG algorithm obtained when (Dn)n is the memory gradient subspace.
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Convergence properties

Assumptions

1. f : H → R is a coercive, differentiable function.
2. There exists (ν, ν) ∈]0,+∞[2 such that (ցn ∈ N) νId 0 A(xn) 0 νId,
3. There exists (γ0, γ1) ∈]0,+∞[2 such that

(ցn ∈ N)
〈
∇f (xn)|d1

n

〉
≤ −γ0‖∇f (xn)‖2 and ‖d1

n‖ ≤ γ1‖∇f (xn)‖.

Sufficient descent property

There exists (µ1, µ2) ∈]0,+∞[2 such that

(ցn ∈ N) f (xn)− f (xn+1) ≥ µ1‖xn+1 − xn‖2 ≥ µ2‖∇f (xn)‖2.

Convergence theorem (in finite dimension)

1. ∇f (xn) → 0 and f (xn) ∞ f (x̃) where x̃ is a critical point of f .
2. If f is convex, any sequential cluster point of (xn)n∈N is a minimizer of f .
3. If f is strictly convex, then xn → x̂ where x̂ is the unique minimizer of f .
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Whiteboard
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Whiteboard
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Acceleration via block-alternation

Problem: Minimization of f : H → ]−∞,+∞].
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Acceleration via block-alternation

Problem: Minimization of f : H → ]−∞,+∞].

x ∈ H

x (1) ∈ H1

x (2) ∈ H2

x (J) ∈ HJ

∈J
j=1Hj = H

where H1, . . . ,HJ

separable real

Hilbert spaces.
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Acceleration via block-alternation

Problem: Minimization of f : H → ]−∞,+∞].

xf = f

x (1)

x (2)

x (J)
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Acceleration via block-alternation

Problem: Minimization of f : H → ]−∞,+∞].

xf = f

x (1)

x (2)

x (J)

→ Block-coordinate strategy: Instead of updating the whole vector x at
iteration n ∈ N, restrict the update to a block jn ∈ {1, . . . , J}.
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Block-coordinate MM quadratic algorithm

Problem: Minimization of f : H → R where f is differentiable.

Assumption: For every y ∈ H, for every j ∈ {1, . . . , J}, there exists a
strongly positive self-adjoint Aj(y) such that the quadratic function

(ցx (j) ∈ Hj) hj(x
(j), y (j); y) = f (y)+⇒∇j f (y)|x (j)−y (j)〉+

1

2
‖x (j)−y (j)‖2Aj (y)

is a majorant function at y (j) of the restriction of f to its j-th block.

Block-coordinate MM quadratic algorithm

Select jn ∈ {1, . . . , J} ,

x
(jn)
n+1 = x

(jn)
n − ϕnAjn(xn)

−1∇jn f (xn),

x
(n)
n+1 = x

(n)
n ,

where n = {1, . . . , J} \ {jn}.
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Selection of blocks

At each iteration n ∈ N, jn ∈ {1, . . . , J} can be chosen according to:

! the cyclic rule:
(ցn ∈ N) jn − 1 = nmod (J).

! a quasi-cyclic rule:
There exists a constant K ≥ J such that, for every n ∈ N,

{1, . . . , J} ⊂ {jn, . . . , jn+K−1} .

! a random rule:
For every n ∈ N, jn is a realization of a random variable.

→ The convergence properties of the algorithm may depend on the block
selection rule.
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Convergence properties

Assumptions

1. f : RN → R is a coercive, differentiable function.
2.There exists (ν, ν) ∈]0,+∞[2 such that (ցn ∈ N) νId 0 Ajn(xn) 0 νId
3.There exists (ϕ, ϕ) ∈]0,+∞[2 such that (ցn ∈ N) ϕ ≤ ϕn ≤ 2− ϕ.

Sufficient descent property

There exists (µ1, µ2) ∈]0,+∞[2 such that

(ցn ∈ N) f (xn)− f (xn+1) ≥ µ1‖xn+1 − xn‖2 ≥ µ2‖∇jn f (xn)‖2.

Convergence theorem (in finite dimension and (quasi-)cyclic rule)

1. ∇f (xn) → 0 and f (xn) ∞ f (x̃) where x̃ is a critical point of f .
2. If f is convex, any sequential cluster point of (xn)n∈N is a minimizer of f .
3. If f is strictly convex, then xn → x̂ where x̂ is the unique minimizer of f .
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Whiteboard
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Case of non differentiable function

Problem: Minimization of f : H → ]−∞,+∞] where f = f1 + f2 with
f1 differentiable and f2 non necessarily differentiable.

MM Algorithm: xn+1 ∈ Argmin
x∈H

h(x , xn)

Difficulty: How to majorize the non-differentiable function f , so that the
majorants remain easy to minimize?
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Case of non differentiable function

Problem: Minimization of f : H → ]−∞,+∞] where f = f1 + f2 with
f1 differentiable and f2 non necessarily differentiable.

MM Algorithm: xn+1 ∈ Argmin
x∈H

h(x , xn)

Difficulty: How to majorize the non-differentiable function f , so that the
majorants remain easy to minimize?

→ Two main approaches:

1. Use quadratic majorant functions for f (but, numerical issues at non
differentiability points)
" Iterative Reweighted Least Squares algorithms (e.g. Weiszfeld,
FOCUSS, IRLS, ...)
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Case of non differentiable function

Problem: Minimization of f : H → ]−∞,+∞] where f = f1 + f2 with
f1 differentiable and f2 non necessarily differentiable.

MM Algorithm: xn+1 ∈ Argmin
x∈H

h(x , xn) + f2(x)

Difficulty: How to majorize the non-differentiable function f , so that the
majorants remain easy to minimize?

→ Two main approaches:

1. Use quadratic majorant functions for f (but, numerical issues at non
differentiability points)
" Iterative Reweighted Least Squares algorithms (e.g. Weiszfeld,
FOCUSS, IRLS, ...)

2. Use quadratic majorant function for f1, and keep f2 untouched
"Variable metric forward-backward algorithm
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Proximity operator within a metric

Definition

Let f ∈ Γ0(H). Let A : H → H be a strongly positive self-adjoint operator.
For all x ∈ H, proxA,f (x) is the proximity operator of f in (H, ‖ · ‖A), i.e.
the unique minimizer of

y -→ f (y) +
1

2
‖x − y‖2A.

Remarks:

! If A = α−1Id, with α > 0, then proxα−1Id,f ≡ proxαf corresponds to
the usual proximity operator.

! We have

(ցx ∈ R
N) proxA,f (x) = A−1/2proxf ◦A−1/2(A1/2x).
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Property

Let f ∈ Γ0(RN). Assume that f is separable, i.e.

(
ցx = (x (i))1≤i≤N ∈ R

N
)

f (x) =
N∑

i=1

fi (x
(i))

and A is diagonal with (strictly) positive diagonal elements (ai )1≤i≤N .

Then, for every x ∈ RN , proxA,f (x) = p where p = (p(i))1≤i≤N ∈ RN is

given by
(ցi ∈ {1, . . . ,N}) p(i) = proxa−1

i fi
(x (i)).
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Variable metric forward-backward algorithm

Problem: Minimization of f : H → ]−∞,+∞] where f = f1 + f2 with
f1 differentiable and f2 convex non necessarily differentiable.

Assumption: For every y ∈ H, there exists a strongly positive self-adjoint
operator A(y) : H → H such that the quadratic function

(ցx ∈ H) h(x , y) = f1(y) + ⇒∇f1(y)|x − y〉+
1

2
‖x − y‖2A(y)

is a majorant function of f1 at y .

VMFB algorithm

xn+1 = proxθ−1
n A(xn), f2

(
xn − ϕnA(xn)

−1∇f1(xn)
)
.

→ (ϕn)n acts as a stepsize parameter.
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Variable metric forward-backward algorithm

Link between MM and VMFB algorithms

Let ϕn ≡ 1. According to the definition of the proximity operator,

xn+1 = argmin
x∈H

1

2
‖x − xn + A(xn)

−1∇f1(xn)‖2A(xn) + f2(x)

= argmin
x∈H

〈
x − xn|A(xn)−1∇f1(xn)

〉
A(xn)

+
1

2
‖x − xn‖2A(xn) + f2(x)

= argmin
x∈H

⇒x − xn|∇f1(xn)〉+
1

2
‖x − xn‖2A(xn) + f2(x)

= argmin
x∈H

h(x , xn) + f2(x).

Particular case: Assume that f1 is β-Lipschitz differentiable. According to the
descent lemma, a possible choice for the metric is A(xn) ≡ β−1Id. Then, VMFB
algorithm becomes equivalent to the usual forward-backward algorithm.
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Convergence properties

Assumptions

1. f1 : H → R is a coercive, differentiable function.
f2 ∈ Γ0(H) is continuous on its domain.

2. There exists (ν, ν) ∈]0,+∞[2 such that, (ցn ∈ N) νId 0 A(xn) 0 νId,

3. There exists (ϕ, ϕ) ∈]0,+∞[2 such that, (ցn ∈ N) ϕ ≤ ϕn ≤ 2− ϕ.

Sufficient descent property

There exists (µ1, µ2) ∈]0,+∞[2 such that

(ցn ∈ N) f (xn)−f (xn+1) ≥ µ1‖xn+1−xn‖2 ≥ µ2‖∇f1(xn)+rn‖2, with rn ∈ ∂f2(xn).

Convergence theorem (in finite dimension)

1. ∇f1(xn) + rn → 0 and f (xn) ∞ f (x̃) where x̃ is a critical point of f .

2. If f1 is convex, any sequential cluster point of (xn)n∈N is a minimizer of f .

3. If f is strictly convex, then (xn)n → x̂ where x̂ is a minimizer of f .
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