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. Motivations -

® Optimization and statistics are the cornerstone of modern data science.
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Motivations

® Optimization and statistics are the cornerstone of modern data science.
® Learning from large “scale” data:
® n observations in dimension d.

® Both large.
® At the interface of :
® mathematics: optimization, statistics, probability.
® computer science.
® Goals :
® Develop algorithms.
® Their theoretical guarantees.
® Efficient implementations.
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Supervised machine learning

® Data : n observations (u;,v;) € U x V, v = 1,...,n, iid. drawn from some
probability measure on U x V. @
® [/ : space of inputs. o ©

$ YV :space of outputs. L 2
® Prediction as a linear function = ' p(u) of features v(u), ¢ : U — R? is mea-
surable.
® Many supervised machine learning models boil down to solving the (regulari-
zed) empirical risk minimization problem

rERA

min {f(x) = % ié(vi,ngp(ui)) + )\R(x)}.

Hinge

> 0 : regularization parameter;

A >

¢ : R x )V — R :the loss function;

R :R¢ = R U {400} the regularization function. \\\w ~
The minimum is assumed to be attained. | N—
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Neural Networks (NNs)
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® NNs have a long history (50’s).
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® NNs have a long history (50’s). |
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1 Neural Networks (NNs) -

® NNs have a long history (50°s). L
9

Rogkgblat
For many people, deep learning is another name (confusion) for a

set of algorithms that use a neural network as an architecture ....

® NNs gain tremendous success in recent years due to:
® the availability of inexpensive, parallel hardware (GPUs, computer clusters),
® massive amounts of data, and
® the recent development of efficient optimization algorithms.
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Neural Networks (NNs) -

<
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lfwﬁ J
For many people, deep learning is another name (confusion) for a

set of algorithms that use a neural network as an architecture ....

NNs have a long history (50’s).

NNs gain tremendous success in recent years due to:
® the availability of inexpensive, parallel hardware (GPUs, computer clusters),
® massive amounts of data, and
® the recent development of efficient optimization algorithms.

A plethora of architectures (art of design), with millions or even
hundreds of billions of neurons.
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E A glimpse of Neural Networks (NNs)
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A glimpse of Neural Networks (NNs)

® Non-linearly separable classification problem.
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A glimpse of Neural Networks (NNs)

® Non-linearly separable classification problem.

® A heuristic approach this complex problem: decompose it into smaller
problems that one can solve.
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A glimpse of Neural Networks (NNs)

® Non-linearly separable classification problem.

® A heuristic approach this complex problem: decompose it into smaller
problems that one can solve.

$ Throw away the “weird” examples from the bottom left corner = linearly separable
problem.

L " |
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A glimpse of Neural Networks (NNs)

® Non-linearly separable classification problem.

® A heuristic approach this complex problem: decompose it into smaller
problems that one can solve.

$ Throw away the “weird” examples from the bottom left corner = linearly separable
problem.

$» Throw away the “weird” examples from the top right corner = linearly separable
problem.

|
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A glimpse of Neural Networks (NNs)

® Non-linearly separable classification problem.

® A heuristic approach this complex problem: decompose it into smaller
problems that one can solve.

$ Throw away the “weird” examples from the bottom left corner = linearly separable
problem.

$» Throw away the “weird” examples from the top right corner = linearly separable
problem.

® Combine these two decision functions into one final decision function.

¢ (w501 + weby + b3)
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A glimpse of Neural Networks (NNs)

® Non-linearly separable classification problem.

® A heuristic approach this complex problem: decompose it into smaller
problems that one can solve.

»

L

Throw away the “weird” examples from the bottom left corner = linearly separable
problem.

Throw away the “weird” examples from the top right corner = linearly separable
problem.

Combine these two decision functions into one final decision function.

¢ (w501 + weby + b3)

b
i Weights
min 0(v;, U; w b
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Empirical vs population risk

® Data : n observations (u;,v;) € U x V,i =1,...,n,iid. drawn from some
probability measure on (the measurable space) U x V.
$ [/ :space of inputs.
® YV :space of outputs. :

® Prediction as a linear function =" p(u) of features ¢(u), ¢ : U — R is mea-

surable.
® Many supervised machine learning models boil down to solving the (regulari-

zed) empirical risk minimization problem

min —Z€ vi, ' o(u;)) st R(z) <e.

rERE T
& Empirical risk = training cost : L(z) Lof LS (v, o(uy)).
® Population/expected risk = testing cost : L(z) = L Euo(l(v, 2" o(u))).
® Two main questions :
® Solve the empirical risk minimization problem (optimization).
$ Analyze its properties, and in particular its relation to the population risk
L minimization (generalization).

|
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Generalization and uniform convergence

<

9
9

°

L J

N

Data : n observations (u;,v;) € U x V, ¢ = 1,...,n, ii.d. drawn from some
probability measure P on (the measurable space) U x V.

Prediction g : i/ — V (special case : g(u) = = ' p(u)).

g is chosen from a set of functions G C VY (e.g., the set of linear predictors
z ' o(-), set of functions computed by a NN, etc.).

Empirical risk : L(g) = 23 (v, g(uy)).

Expected risk : L(g) = E, . (£(v, g(u))).

L(g) is random as it is chosen based on random training data.

|
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Generalization and uniform convergence

<

L J

L I

°

N

Data : n observations (u;,v;) € U x V, 1 = 1,...,n, ii.d. drawn from some
probability measure P on (the measurable space) U x V.

Prediction g : i/ — V (special case : g(u) = = ' p(u)).

g is chosen from a set of functions G C V¥ (e.g., the set of linear predictors
z ' o(-), set of functions computed by a NN, etc.).

Empirical risk : L(g) = 23 (v, g(uy)).

Expected risk : L(g) = E, . (£(v, g(u))).

L(g) is random as it is chosen based on random training data.

Naturally choose the ERM predictor

geg
Fundamental question : how well g, predicts the relationship between all
pairs (u,v) ~ P in the sense that its population risk is close to the one of the
best possible predictor, i.e. the excess risk

L(gk.,) —inf L(g) is small. N
g CIMPA’25- 8



Generalization and uniform convergence

L(gin) 08 L) = ( L(gEn) ~ inf 2(9)) + (int Lio) ~inf L(g))

g geyg geyg g

L |
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Generalization and uniform convergence

L(g%m) —inf L(g) = | L(95,) — inf L(g) | + | inf L(g) — inf L(g)
g geyg geyg g

Estimation error Approximation error
small if G rich enough

L |
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Generalization and uniform convergence

L(germ) — igfL(g) = | L(g%m) — ;ggL(g) ) + | ;ggL(g) - igfL(g) |

Estimation error Approximation error
small if G rich enough

g~ € Argmin L(g) # 0 R R R N
S Lgtm) ~ (9 = (L(92m) — L(gm)) + (Elgim) — L(97)) + (L6~ L(g")

L |
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Generalization and uniform convergence

L(gérm)—igfL(g): L(g5m) — inf L(g) ) + | inf L(g) —inf L(g)

gey gey g
Estimation error Approximation error
small if G rich enough
g* € Argmin L(g) 7& 0 < 0 by optimality

0 Llgtem) — Lo = (Elgtn) ~ Dt + (Flgim) — 261) + (L6 — L(9"))

L |
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Generalization and uniform convergence!

L(garm) —nf L(g) = | L(géym) — inf L(g) | + | inf L(g) — inf L(g)
g geyg geyg g

Estimation error Approximation error
small if G rich enough
g* € Argmin L( ) 4 0 < 0 by optlmallty — 0 by the LLN
geg

L(germ) — L(97) = (L(germ germ + (L(gom) — L(g")) + (L

L |
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Generalization and uniform convergence!

L(garm) —nf L(g) = | L(gém) — inf L(g) | + { inf L(g) — inf L(g)
g geyg geyg g

Estimation error Approximation error

small if G rich enough
More complicated

g* € Argmin L( ) 7& 0 Biased estimate < 0 by optlmallty — 0 by the LLN

eg
’ L(gtm) — L(g%) = (L(gtm) — L(g%m) ) + (L(gtm) — L(g*) ) + (L

L |
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Generalization and uniform convergence!

L(garm) —nf L(g) = | L(gém) — inf L(g) | + { inf L(g) — inf L(g)
g geyg geyg g

Estimation error Approximation error

small if G rich enough
More complicated

g* € Argmin L( ) 7& 0 Biased estimate < 0 by optlmallty — 0 by the LLN

eg
’ L(gtm) — L(g%) = (L(gtm) — L(g%m) ) + (L(gtm) — L(g*) ) + (L

< zgg (L(g) — L(g)) + Elellg) (L(g) L(g )

Uniform bound < 281615 L(g) — L(g)]-
g

L |
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Generalization and uniform convergence!

L(gérm) —inf L(g) = | L(germ) — inf L(g) inf L(g) —inf L(g)
g gey gey g
Estimation error Approximation error

small if G rich enough
More complicated

g* € Argmin L( ) 7& 0 Biased estimate < 0 by optlmallty — 0 by the LLN

9€g L(gsm) — L(9%) = (L(g&m) — L(g8m) ) + (L(gEm) ) (L )

< sup (£ = 2o+ (20

Uniform bound < 281615 |L(g) — L(g)|-
g

This bound intimately linked to Rademacher complexity of the loss class /g L {(u,v) = L(v,g(u)): g€ G}

R,(lg) € E

1 mn
sup — Y el(vs, g(u;)) ¢; i.i.d Rademacher (uniform on {£1}).
belg n i—1

L |
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Generalization and uniform convergence!

L(gérm) —inf L(g) = | L(germ) — inf L(g) inf L(g) —inf L(g)
g gey gey g
Estimation error Approximation error

small if G rich enough
More complicated

g* € Argmin L( ) 7& 0 Biased estimate < 0 by optlmallty — 0 by the LLN

9€g L(am) — L(9%) = (L(ghm) — L(g8m) ) + (L(95m) ) (L )

< sup (£ = 2o+ (20

Uniform bound < 281615 |L(g) — L(g)|-
g

This bound intimately linked to Rademacher complexity of the loss class Eg {(u v) = L(v,g(u)): g€ G}

e 1 . |
R,({g) CE |sup — E el (vi, g(u;)) ¢; i.i.d Rademacher (uniform on {£1}).
£€£g n i—1
Expectation wrt data (u;, v;)icn) and € = (€1, ..., €p).

Rademacher complexity measures the complexity of the function class /g over n data points.

It should converge to zero as n gets large, and this determines the generalization error rate.

Can be estimated for some loss classes.

Here R, ({g) is the Rademacher complexity loss class /g, not G. We can connect R,,(¢g) to R,(G) in

| many cases : e.g. Lipschitz continuous loss, 0 — 1 loss and binary classification. |
CIMPA25- 9
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Generalization and uniform convergence

Theorem [f{ is bounded on G, then with probability at least 1 — & on (u;, v;)ien)

L(gtn) — L") < AR () + /2252

n
Thus L(g%..,) — L(g*) — 0if R,,({g) — O.

L |
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Generalization and uniform convergence!

Theorem [f{ is bounded on G, then with probability at least 1 — & on (u;, v;)ien)

. . 2log(2/0
L(gtn) — L") < AR () + /2252
Thus L(g%..,) — L(g*) — 0if R,,({g) — O.

® Typically a slow rate O(1/+/n)) (e.g. for Lipschitz losses R,,({g) = O(1/+/n)
® Can be improved to the faster rate O(1/n) with a more refined analysis, under addltional assumptions on
the loss (e.g. strong convexity) and a suitably simple class G.

L |
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Generalization and uniform convergence!

Theorem [f{ is bounded on G, then with probability at least 1 — & on (u;, v;)ien)

N N 21og(2/6
L(gem) — L(g9”) < 4R, ({g) +\/ 72 /%)
Thus L(g%..,) — L(g*) — 0if R,,({g) — O.

Typically a slow rate O(1/+/n)) (e.g. for Lipschitz losses R, ({g) = O(1/+/n))).

Can be improved to the faster rate O(1/n) with a more refined analysis, under additional assumptions on
the loss (e.g. strong convexity) and a suitably simple class G.
® Let (gr)ren be a sequence of iterates of an optimization algorithm to minimize L. Then,

L 3

Ligr) = L(g") < (L(g) = L(ge)) + (L(ow) = L(0m) ) + (L(0m) = L(G%m) ) + (LGm) — L(g))

) -
< 4sup|Z(9) — L(g)| + (L(gw) — Llgim))
geg

L |
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Generalization and uniform convergence!

Theorem [f{ is bounded on G, then with probability at least 1 — & on (u;, v;)ien)

N N 21og(2/6
L(gem) — L(g9”) < 4R, ({g) +\/ 72 /%)
Thus L(g%..,) — L(g*) — 0if R,,({g) — O.

Typically a slow rate O(1/+/n)) (e.g. for Lipschitz losses R, ({g) = O(1/+/n))).

L 3

Can be improved to the faster rate O(1/n) with a more refined analysis, under additional assumptions on
the loss (e.g. strong convexity) and a suitably simple class G.
® Let (gr)ren be a sequence of iterates of an optimization algorithm to minimize L. Then,

Ligr) = L(g") < (L(g) = L(ge)) + (L(ow) = L(0m) ) + (L(0m) = L(G%m) ) + (LGm) — L(g))

) -
< 4sup|Z(9) — L(g)| + (L(gw) — Llgim))
gEg

_J/

-~

Estimation error O(1/+/n)

L |
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Generalization and uniform convergence!

Theorem [f{ is bounded on G, then with probability at least 1 — & on (u;, v;)ien)

. . 2log(2/0
L(gtn) — L") < AR () + /2252
Thus L(g%..,) — L(g*) — 0if R,,({g) — O.

Typically a slow rate O(1/+/n)) (e.g. for Lipschitz losses R,,({g) = O(1/+/n)
Can be improved to the faster rate O(1/n) with a more refined analysis, under addltional assumptions on

the loss (e.g. strong convexity) and a suitably simple class G.
® Let (gr)ren be a sequence of iterates of an optimization algorithm to minimize L. Then,

L 3

Ligr) = L(g") < (L(g) = L(ge)) + (L(ow) = L(0m) ) + (L(0m) = L(G%m) ) + (LGm) — L(g))

) -
< 4sup|Z(9) — L(g)| + (L(gw) — Llgim))
gEg

_J/
\ . _J/
V -~

Estimation error O(1/+/n) Optimization error

L |
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Generalization and uniform convergence!

Theorem [f{ is bounded on G, then with probability at least 1 — & on (u;, v;)ien)

N N 2log(2/6
L(gem) — L(g9”) < 4R, ({g) +\/ 72 /%)
Thus L(g%..,) — L(g*) — 0if R,,({g) — O.

Typically a slow rate O(1/+/n)) (e.g. for Lipschitz losses R, ({g) = O(1/+/n))).

L 3

Can be improved to the faster rate O(1/n) with a more refined analysis, under additional assumptions on
the loss (e.g. strong convexity) and a suitably simple class G.
® Let (gr)ren be a sequence of iterates of an optimization algorithm to minimize L. Then,

Ligr) = L(g") < (L(g) = L(ge)) + (L(ow) = L(0m) ) + (L(0m) = L(G%m) ) + (LGm) — L(g))

) -
< 4sup|Z(9) — L(g)| + (L(gw) — Llgim))
gEg

_J/
\ . _J/
V -~

Estimation error O(1/+/n) Optimization error

Take away messages

In machine learning, no need to optimize below estimation error,
i.e. up to accuracy O(1/+/n) on the risk

L |
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Generalization and uniform convergence!

Proof: We provide the proof of the upper-bound in expectation and the bound in probability follows from stan-
dard concentration arguments, for instance McDiarmid’s inequality. The proof relies on a symmetrization trick. Let
D" = (uj, )¢, be an independent copy of the data D = (u;, ;)¢ (), With corresponding empirical risk L'(g) =
o (v, g(ul)). We have

1
n

E [¢(v}, 9(u}))| D] = L(g) E[supf(g)—L(g)]=E sup — ZE (vi, g(u;)) E(vé,g(UZ;))ID]]

geg

supE <Esup < E |E

EEHD] ~EF = [sup <£<vi,g<ui>>—e<v;,g<u;>>>].

If X and X’ are two i.i.d. r.v's, then X = X’ (— is equality i |n distribution), and thus h(X) < h(X") in distribution for
any function h. Further, h(X) — h(X') = h(X ) — h(X) L1, (h(X) — h(X’)) e(h(X) — h(X")), where € is
we

uniform on {£1} and is independent of X and X’. Applying this to (u;,v;) and (u}, v}), we get
E lsupL(g) — L(g)] < E |sup — ZE’L (v, g(uq)) — £(vg, g(u )))]
g€y | 9€9 n
[ 1 n n
sup is sublinear  ¢; symmetric < [E [sup — Z e; (L(v;, 9(ug))) Sup —eil (v, g(u = 2R, ({g)
(966 T i) geg i

)

sup,eg L(g) — L(g), we get
B E [L(gom) — L(g¥)] < 4R, (Lg). B

a.s. convergence follows by taking § = 2/n? and use Borel-Cantelli lemma. CIVIBA'25- 11



- Example: least-squares

lv,x"p(u)) = 3(v—x" p(u))?, and thus

L(z) = 2B [~ 2" pw)?] I(a) = o- >+ plu)”
We have _
L)~ L (% Z ol E [p(u)o(u) ] | o
a7 <% zn;vzgp(ui) _E [w(u)]> + % (% nl o2 — E [v2]> |
Thus ) )
s [E(e) = L] < all Z@ u)p(us) T~ E [p(u)p()T] |
b ifjwm) Efop(w)]| + & |~ 3 o2 ~E [
: OO R S e

CIMPA’25- 12



Example: mean estimation

L(z) = & 3" (z —v;)? L(z) = 1E(z — v)?
ngrm — Argmin E(x) — % Z?:l V; r* = Argmin L(ZC) — E[U]
rER reR

|
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Example: mean estimation

L(z) = & 3" (z —v;)? L(z) = 1E(z — v)?
ngrm — Argmin E(gp) — % Z?:l Vi r* = Argmin L(ZE) — E[U]
rER reR
* 2 *\ 2

Llat) — L) = Toeml 0T g a)
(w5n)° B .
_ e BUL _ gpyj(at,,, — E)
_ (qjjcfrm)2 * | E[U]Q _ 1 * 2
T 9 E[U]xerm | 9 — 9 (xerm E[U])

1 N iidsar:ples 5

— §(xerm o E['xerm]) y

|
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Example: mean estimation -
L(z) = 5; Sy (@ — v)? L(z) = 3E(x —v)?
Th., = AI;UgEI]Em L( ) = i S v X = ArxgEIIEin L(z) = Elv].
Dat) — L(o*) = ol T g o)
= Cem”  BRE g, — El)
= Ceml gy, + B L, By
= ¢ (e — Elrim])
E(L(z* ) — L(z*)] = %Var[az;frm] _ %Var %iv 2n2 ZVar 5] = Va];[ |
L |
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- Example: mean estimation -
L(w) = 55 Siy (@ = v;)? L(z) = 3E(z - v)?
Th., = AI;}gEIIIRgm L( ) = i S v X = Aager]gin L(z) = Elv].
Dty — L(a*) = ol OV gy o
= Cem”  BRE g, — El)
= e gy, + B - Lar, —Ep?
= ¢ (e — Elrim])
E(L(z* ) — L(z*)] = —Var[ . %Var % f:v - Z\;ar 0] = Va];[ |

® Improved O(1/n) rate.
® Valid only at =, (non-uniform) and uses strong convexity of the loss.

L |

CIMPA’25- 13



Machine learning for big data
min {f(m) = 43§[€(x,§)]}.

rceRA

|
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- Machine learning for big data -
min {f(w) = @g[f(x,«f)]}-
® Large-scale machine learning: large d, large n :
® J :dimension of each (input) observation.
® n :number of observations.
L |
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ﬁ L L L ‘ﬂ
Machine learning for big data
min {f(w) = ﬂg[ﬁ(x,ﬁ)]}.
rERA
® Large-scale machine learning: large d, large n :
® J :dimension of each (input) observation.
® n :number of observations.
® Gradient descent and variants: running-time complexity: O(dn).
L |

CIMPA’25- 14



Machine learning for big data
min {f(w) = ﬂg[ﬁ(x,ﬁ)]}.

rERd
Large-scale machine learning: large d, large n :

® J :dimension of each (input) observation.
® n :number of observations.

Gradient descent and variants: running-time complexity: O(dn).

Scaling to large-scale problems: large d and large n.

|
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Machine learning for big data
min {f(m) = %[é(m,f)]}.

rERd
Large-scale machine learning: large d, large n :

® d:dimension of each (input) observation.
® n :number of observations.

Gradient descent and variants: running-time complexity: O(dn).

: 3

.
on B)

Scaling to large-scale problems: large d and large n.

Rather sample gradients: stochastic gradient descent and variants.

|
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9

9

9

9

Machine learning for big data

Large-scale machine learning: large d, large n :

o
»

d : dimension of each (input) observation.

n : number of observations.

Ideal running-time complexity: O(dn).

Scaling to large problems:

o
»

1950’s: computers not powerful enough.
2010’s: data too massive.

Going back to stochastic methods for training:

9

£

Stochasticity on the data: stochastic gradient methods

Stochasticity on the decision variable: stochastic incremental methods,
coordinate descent methods (not considered in this class).

Distributed methods: computation on distributed agents/units (not considered in
this class)

Federated learning: data spread among several agents/clients who do not want
to share/reveal them. N
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~ First-Order Stochastic Optimization

min f(z).

® Population risk minimization :
$ Minimize f(x) = E¢ [l(x,€)], £ ~ P.

® Empirical risk minimization (special case of the above) :
® Minimize f(z) = £ Y1, 4i(x).

L |
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~ First-Order Stochastic Optimization

min f(z).

® Population risk minimization :
$ Minimize f(x) = E¢ [{(x,€)], € ~ P.

® Empirical risk minimization (special case of the above) :
® Minimize f(z) = + >0 li(=).

Input : algorithm parameters (7). oy Zo, Stopping rule, probability distributions (P ), ON RY:
Initialization : k£ = 0;

while Stopping rule not satisfied do
Sample a stochastic gradient estimate G ~ Py ;

Trr1 = h ((2i)i<k, (Gi)i<ksMk) 3
k+—k+1.
return ;.

L |
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~ First-Order Stochastic Optimization

min f(z).
® Population risk minimization :
® Minimize f(z) = E¢ [{(x,€)], € ~ P.
$ Sample n iid samples (&;)icjn) from P.
® Take Gy = =Y 1 Vl(xg, &)
® Empirical risk minimization (special case of the above) :
® Minimize f(z) = + >0 li(x).

® Sample a batch By, C [n].
® Take Gy = 57 2 icp, Vii(wn).

Input : algorithm parameters (1), <, o, stopping rule, probability distributions (P ), .y ON RY:
Initialization : k£ = 0;

while Stopping rule not satisfied do
Sample a stochastic gradient estimate G ~ Py ;

Trr1 = h ((2i)i<k, (Gi)i<ksMk) 3
k+—k+1.
return ;.

L |
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 First-Order Stochastic Algorithms
min f(x).

rER4
Stochastic Gradient Descent (SGD)
Input : step-size sequence (Vi),cn: To, Stopping rule,
probability distributions (Py), .y on R?;
Initialization : £k = 0;

while Stopping rule not satisfied do
Sample a stochastic gradient estimate G, ~ Py ;

Tr+1 = Tk — VG ;
k<~ k+1.
return z;..

L |
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 First-Order Stochastic Algorithms
min f(x).

rER4
Stochastic Gradient Descent (SGD) Adaptive Gradient (AdaGrad)
Input : step-size sequence (Vx),cy> To, Stopping rule, Input : step-size sequence (Vi) cn» To, Stopping rule,
probability distributions (Py), .y on R?; probability distributions (Py),, .y on RY;
Initialization : £k = 0; Initialization : £ = 0;
while Stopping rule not satisfied do while Stopping rule not satisfied do
Sample a stochastic gradient estimate G ~ Px; Sample a stochastic gradient estimate G ~ Py ;
Tkl = Tk — V.G ; Thkt+1 = Tk — ka:Gk/\/Zf];:O Gi )
k<« k+1. ke k1.
return ;. return ;..

L |
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 First-Order Stochastic Algorithms
min f(x).

rER4
Stochastic Gradient Descent (SGD) Adaptive Gradient (AdaGrad)
Input : step-size sequence (V%) > To, Stopping rule, Input : step-size sequence (Vi) cn» To, Stopping rule,
probability distributions (Py), .y on R?; probability distributions (Py),, .y on RY;
Initialization : £k = 0; Initialization : £ = 0;
while Stopping rule not satisfied do while Stopping rule not satisfied do
Sample a stochastic gradient estimate G ~ Px; Sample a stochastic gradient estimate G ~ Py ;
Thkal1 — Tk — 'Yka , L4+1 = Tk — ’Vk:Gk/\/ZfI;:O Gi )
k<« k+1. ke k1.
return ;. return ;..

ADAptive Moment estimation (ADAM)
Input : v > 0,¢ > 0, (o, 3) € [|0,1], zg, stopping rule, probability
distributions (Py) .y on R%;
Initialization : £ = 0;

while Stopping rule not satisfied do
Sample a stochastic gradient estimate G ~ Py ;

yr = ayr_1 + (1 — )Gy ; (biased 1st moment estimate)
2, = Bag—1 + (1 — B)G%; (biased 2nd moment estimate)
Jr = yr/(1 — o) ; bias correction of 1st moment

2r = 21,/ (1 — B%); bias correction of 2nd moment
Thi1 = Tk — Yr/(€ + V) ;

L kek+1. ]
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 First-Order Stochastic Algorithms
min f(x).

rER4
Stochastic Gradient Descent (SGD) Adaptive Gradient (AdaGrad)
Input : step-size sequence (V%) > To, Stopping rule, Input : step-size sequence (Vi) cn» To, Stopping rule,
probability distributions (Py), .y on R?; probability distributions (Py),, .y on RY;
Initialization : £k = 0; Initialization : £ = 0;
while Stopping rule not satisfied do while Stopping rule not satisfied do
Sample a stochastic gradient estimate G ~ Px; Sample a stochastic gradient estimate G ~ Py ;
Thkal1 — Tk — 'Yka , L4+1 = Tk — ’Vk:Gk/\/ZfI;:O Gi )
k<« k+1. ke k1.
return ;. return ;..

ADAptive Moment estimation (ADAM)
Input : v > 0,¢ > 0, (o, 3) € [|0,1], zg, stopping rule, probability
distributions (Py) .y on R%;
Initialization : k = 0; ® These are the most popular.

while Stopping rule not satisfied do
Sample a stochastic gradient estimate G ~ Py ;

yr = ayr_1 + (1 — )Gy ; (biased 1st moment estimate)
2, = Bag—1 + (1 — B)G%; (biased 2nd moment estimate)
Jr = yr/(1 — o) ; bias correction of 1st moment
2r = 21,/ (1 — B%); bias correction of 2nd moment

Tpt11 = Tk — YU/ (€ + V2k);

L kek+1. ]
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 First-Order Stochastic Algorithms
min f(x).

rER4
Stochastic Gradient Descent (SGD)
Input : step-size sequence (Vx),cy> To, Stopping rule,
probability distributions (Py), .y on R?;
Initialization : £k = 0;

while Stopping rule not satisfied do
Sample a stochastic gradient estimate G, ~ Py ;

Tr+1 = Tk — VG ;
k<~ k+1.
return z;..

® These are the most popular.
® We will focus this class on SGD:
® Dby far the most popular,
® simpler to analyze,
® qgive the key tools to understand
and analyze other algorithms.

|
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 First-Order Stochastic Algorithms
min f(x).

rERA
Stochastic Gradient Descent (SGD)

Input : step-size sequence (Vi) To, Stopping rule, probability distributions (Py), . ON RY;

Initialization : £ = 0;

while Stopping rule not satisfied do

Sample a stochastic gradient estimate G ~ Py ;
Tr+1 = Tk — VG ;

k< k+1.
return x;.

Gr = Vf(zr) + ex : ex is the stochastic error on the gradient.
The distribution of the error e, must only depend on information up to iteration k.

oo

Given that information, e, should have :
® zero mean :i.e. G is an unbiased estimate of V f(xy) ;
® a controlled mean "amplitude” : i.e. the variance of GG, should be bounded in a certain way.
® If one hopes to ensure any convergence guarantee of the algorithm, either :
® (;; has to eventually point to the right gradient : the variance should vanish, i.e. G, — V f(xx) — 0in
some stochastic sense;
® or use the step-sizes to cancel out the error term.
|;. The aim in the rest of the course is to give this firm theoretical grounds. J

CIMPA’25- 18



eeo0o0b0b

Outline

Classes of functions.
Toolbox on sequences.
Deterministic smooth optimization.

Stoc
Stoc
Stoc

nastic approximation a la Robbins-Monro.

nastic gradient descent: vanishing step-size.

nastic gradient descent for finite sums.

|
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Classes of functions.

Outline
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Differentiability -

In the following, ||-|| is the euclidian norm on R™ for any n and the dimension is to be understood from the context.

Definition We denote by L(R?, R™) the vector space of continuous linear operators from R to R™. It is endowed

A
J4]| = sup 1221
z#0 || 7]

with the norm

|
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Differentiability -

In the following, ||-|| is the euclidian norm on R™ for any n and the dimension is to be understood from the context.

Definition We denote by L(R?, R™) the vector space of continuous linear operators from R to R™. It is endowed
with the norm

A
J4]| = sup 1221
z#0 || 7]

Definition A function F : QQ C RY — R™, where ) is an open subset, is (Fréchet) differentiable at = € € if there
exists an operator F'(x) € L(RY,R™), called the (Fréchet) derivative of ' at x, such that

F(z+2)=F(x)+ F'(x)z+o(||z|)), Vze R

This element is unique, when it exists.

|
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Differentiability -

In the following, ||-|| is the euclidian norm on R™ for any n and the dimension is to be understood from the context.

Definition We denote by L(R?, R™) the vector space of continuous linear operators from R to R™. It is endowed

with the norm 4
4] = sup 2

z20 |||

Definition A function F : QQ C RY — R™, where ) is an open subset, is (Fréchet) differentiable at = € € if there
exists an operator F'(x) € L(RY,R™), called the (Fréchet) derivative of ' at x, such that

F(z+2)=F(x)+ F'(x)z+o(||z|)), Vze R

This element is unique, when it exists.

Remark (2 is supposed open to ensure uniqueness of the derivative.

|
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Differentiability -

In the following, ||-|| is the euclidian norm on R™ for any n and the dimension is to be understood from the context.

Definition We denote by L(R?, R™) the vector space of continuous linear operators from R to R™. It is endowed

with the norm A
4] = sup 2

z20 |||

Definition A function F : QQ C RY — R™, where ) is an open subset, is (Fréchet) differentiable at = € € if there
exists an operator F'(x) € L(RY,R™), called the (Fréchet) derivative of ' at x, such that

F(z+2)=F(x)+ F'(x)z+o(||z|)), Vze R

This element is unique, when it exists.

Remark (2 is supposed open to ensure uniqueness of the derivative.

A A

v

N NS

Smooth Non-smooth

|
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: Differentiability -

Definition Let F' : RY — R™. If F is differentiable with respect to the k'" component of = (with the other compo-
nents fixed), we denote 3711 (x) this derivative, which is called the partial derivative of F' wrt the k'" variable

L |
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Differentiability -

Definition Let F' : RY — R™. If F is differentiable with respect to the k'" component of = (with the other compo-
nents fixed), we denote 5711 (x) this derivative, which is called the partial derivative of F' wrt the k'" variable

Proposition [f I' is differentiable at x, then it has partial derivatives and

d
OF
Za— )2k, VzeR%

k=1

|
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Differentiability -

Definition Let F' : RY — R™. If F is differentiable with respect to the k'" component of = (with the other compo-
nents fixed), we denote 3711 (x) this derivative, which is called the partial derivative of F' wrt the k'" variable

Proposition [f I' is differentiable at x, then it has partial derivatives and

d

F
E — . VzeRY
£ a Zk; Z

0 ifxixa =0
Remark The converse is not true. Take for example the function F' : (x1,x2) € R* — . . The partial
1 otherwise

derivatives are both 0 at the origin, but the function is NOT differentiable at the origin since it is not even continuous
there.

|
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Differentiability

Definition Let F' : RY — R™. If F is differentiable with respect to the k'" component of = (with the other compo-

nents fixed), we denote 5711 (x) this derivative, which is called the partial derivative of F' wrt the k'" variable

Proposition [f I' is differentiable at x, then it has partial derivatives and

d
OF
Za— )2k, VzeR%

kj:
0 I'fxl.’,l?g =0

Remark The converse is not true. Take for example the function F : (x1,x5) € R? . The partial
1 otherwise

derivatives are both 0 at the origin, but the function is NOT differentiable at the origin since it is not even continuous

there.

The derivative in this case is nothing but the Jacobian matrix

0 9, O

2 e e
2 (q 2(x) - 2 ()

OF.,, OF,, OFm,

821 (37) 322 (37) al;:d (55)

|
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: Differentiability -

Definition Higher-order Fréchet derivatives are defined inductively. Thus, the second Fréchet derivative of F' at x
is the (bilinear) operator "' (z) € L(R?, L(RY, R™)) which satisfies

F'(x +2) = F'(z) + F"(2)z + o(||2), V2 € R%.

L |
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: Differentiability -

Definition Higher-order Fréchet derivatives are defined inductively. Thus, the second Fréchet derivative of F' at x
is the (bilinear) operator "' (z) € L(R?, L(RY, R™)) which satisfies

F'(x +2) = F'(z) + F"(2)z + o(||2), V2 € R%.

Proposition If F" is twice differentiable at x, then I (x) is a symmetric bilinear operator.

Proof: Bilinearity comes from the isomorphism between £(R<?, £(R%,R™)) and the vector space of bilinear opera-
tors. Symmetry is a consequence of the fact that the roles of two directions when taking the derivative of the derivative
are exchangeable. N

L |
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: Differentiability -

Definition Higher-order Fréchet derivatives are defined inductively. Thus, the second Fréchet derivative of F' at x
is the (bilinear) operator "' (z) € L(R?, L(RY, R™)) which satisfies

F'(x +2) = F'(z) + F"(2)z + o(||2), V2 € R%.

Proposition If F" is twice differentiable at x, then I (x) is a symmetric bilinear operator.

Proof: Bilinearity comes from the isomorphism between £(R<?, £(R%,R™)) and the vector space of bilinear opera-
tors. Symmetry is a consequence of the fact that the roles of two directions when taking the derivative of the derivative
are exchangeable. N

Example Whenm = 1, then

F'(x)(2,y) =

where afi;; p (x) are the second partial derivatives of F' at x.

L |
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Chain rule

Theorem LetF : Q C R? - R™ and G : = C R™ — R!, where Q and = are open sets such that F(Q) C E.
Suppose that F' is differentiable at x € () and G is differentiable at F'(z) € Z. Then G o F is differentiable at x with

(Go F)(z) = G'(F(z))F'(x).

L |
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—

Chain rule

-

Theorem LetF : Q C R? - R™ and G : = C R™ — R!, where Q and = are open sets such that F(Q) C E.
Suppose that F' is differentiable at x € () and G is differentiable at F'(z) € Z. Then G o F is differentiable at x with

Remark [In terms of Jacobian matrices, the chain rule reads

Joor(z) ¥

= Jo(F(r))Jr ()

8(GoF)1 8(GoF)1

O(GoF)q O(GoF)-

8(GOF)Z 8(GOF)Z T

(Go F)(z) = G'(F(z))F'(x).

8(GoF)1

8:13d

8(GoF)2

8$d

a(GOF)l

oxg

CIMPA’25- 24



N N

Chain rule

Theorem LetF : Q C R? - R™ and G : = C R™ — R!, where Q and = are open sets such that F(Q) C E.
Suppose that F' is differentiable at x € () and G is differentiable at F'(z) € Z. Then G o F is differentiable at x with

(Go F)(z) = G'(F(z))F'(x).

Remark [In terms of Jacobian matrices, the chain rule reads

Jaor () def e (@ or () T (@)
AGoF () HGePLy UG
RF@) FRF@) o SE(F@) () S - )
e(F e | B EE) GEEE) e FRE@) ] 520 GRS
G () GG(F@) o 2 (F@)) \ ) o) - ()

Applies only to the smooth case,
though in ML/DL many apply it with non-smooth functions

CIMPA’25- 24



a o N
Chain rule
Proof: We have
G(F(w+2)) = G(F(x)+ F'()z +of|2]] )
= G(F(z)) + G'(F(x)) (F’(fﬂ)z + O(HZH)) + o ([|[F'(z)z + o([lz])I])
= G(F(z)) + G'(F(x))F'(x)z + O(G’(F(w)) Iz > +o([[F'(x)z + o([[2])1]) -
Since F'(z) and G'(F'(x)) are bounded linear operators, we have
O(G’(F(w)) I=] ) =o(l[z]) and o(|[F"(x)z + o([[z])I) = o(l[=])-
N
L .
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Gradient and Hessian

In optimization, we are primarily interested in functions F' : R¢ — R. We equip R™ with an scalar product that we
denote (-, -).

Definition (Gradient) Let F' : Q C R? — R, and suppose that F is differentiable at x € R%. The gradient of F at
x is the vector denoted V F(x) € RY such as

F'(z)z = (VF(z),z2), VzeR%

The gradient exists and is unique by the Riesz—Fréchet representation theorem.

L |
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N N

Gradient and Hessian

In optimization, we are primarily interested in functions F' : R¢ — R. We equip R™ with an scalar product that we
denote (-, -).

Definition (Gradient) Let F' : Q C R? — R, and suppose that F is differentiable at x € R%. The gradient of F at
x is the vector denoted V F(x) € RY such as

F'(z)z = (VF(z),z2), VzeR%

The gradient exists and is unique by the Riesz—Fréchet representation theorem.

Definition (Hessian) Let F' : Q C RY — R, and suppose that I is twice differentiable at x € R®. The Hessian of
F at x is the matrix denoted V2 F (z) € R**4 such that

F"(z)(z,y) = (2, V?F(2)y) = {y,V’F(z)z), Vz,yeR"

Again, the Hessian exists and is unique and it is a symmetric matrix as F" (x) is a symmetric operator.

L |
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N N

Gradient and Hessian

In optimization, we are primarily interested in functions F' : R¢ — R. We equip R™ with an scalar product that we
denote (-, -).

Definition (Gradient) Let F' : Q C R? — R, and suppose that F is differentiable at x € R%. The gradient of F at
x is the vector denoted V F(x) € RY such as

F'(z)z = (VF(z),z2), VzeR%

The gradient exists and is unique by the Riesz—Fréchet representation theorem.

Definition (Hessian) Let F' : Q C RY — R, and suppose that I is twice differentiable at x € R®. The Hessian of
F at x is the matrix denoted V2 F (z) € R**4 such that

F"(z)(z,y) = (2, V?F(2)y) = {y,V’F(z)z), Vz,yeR"

Again, the Hessian exists and is unique and it is a symmetric matrix as F" (x) is a symmetric operator.

Remark The Hessian is the derivative of the gradient.

L |
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- Gradient and Hessian

-

® If we choose the scalar product (x, z) = 2 ' z = 2 "z, then from S26 and S27, we have

1 aF d
— (€)zi = VF(z)"2 =) (VF(z));z and
i—1 0, i=1
O*F T2 oo S
!/
F'(z)(z,y) = = 02,07 (az)zzyj =z VF(x)y=y V°F(r)z = ijz:1(v P ))wzzij
which entails that
2 (2)\ B R - g
5z (1) O CONMRR 1 )
VF(,Q?) _ 81172. and VQF(x) _ 8%28%1 13, 92 8%282-Bd
o () PE () O () L 0y )
0x g 0x 4011 O0x 4012 02x4

® The form of the gradient and the Hessian depend on the choice of scalar product, and the above choice is
not the only one.

® In this course, we will essentially work with the scalar product (z,2) =22 = 2" x.

L |
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~ Chain rule of gradient and Hessian

Theorem LetF : Q C RY — R™ and G : = C R™ — R, where Q and = are open sets such that () C =.
Suppose that F' is differentiable at x € () and G is differentiable at F'(x) € Z. Then G o F' is differentiable at x with

V(G o F)(z) = Jp(z) ' VG(F(z)).

L |
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~ Chain rule of gradient and Hessian

Theorem LetF : Q C RY — R™ and G : = C R™ — R, where Q and = are open sets such that () C =.
Suppose that F' is differentiable at x € () and G is differentiable at F'(x) € Z. Then G o F' is differentiable at x with

V(G o F)(z) = Jp(z) ' VG(F(z)).

Example [ is affine, i.e. F(x) = Ax +b, A € R™*4 b € R™. Therefore,

V(GoF)(z)=A"VG(Ax +b).

L |
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~ Chain rule of gradient and Hessian

Theorem LetF : Q C RY — R™ and G : = C R™ — R, where Q and = are open sets such that () C =.
Suppose that F' is differentiable at x € () and G is differentiable at F'(x) € Z. Then G o F' is differentiable at x with

V(G o F)(zx) = Jr(z) ' VG(F(z)).

Example [ is affine, i.e. F(x) = Ax +b, A € R™*4 b € R™. Therefore,

V(GoF)(z)=A"VG(Ax +b).

Theorem LetF : RY — R™ and G : R™ — R be twice differentiable at x € R% and F(z) € R™ such that G o F
is twice differentiable at x. Then G o F' is twice differentiable at x with

V(G o F)(x) = Jr(x) V2G(F(@))Tr(x) + Y o (P(x) V*Eix).

L |
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~ Chain rule of gradient and Hessian

Theorem LetF : Q C RY — R™ and G : = C R™ — R, where Q and = are open sets such that () C =.
Suppose that F' is differentiable at x € () and G is differentiable at F'(x) € Z. Then G o F' is differentiable at x with

V(G o F)(zx) = Jr(z) ' VG(F(z)).

Example [ is affine, i.e. F(x) = Ax +b, A € R™*4 b € R™. Therefore,

V(GoF)(z)=A"VG(Ax +b).

Theorem LetF : RY — R™ and G : R™ — R be twice differentiable at x € R% and F(z) € R™ such that G o F
is twice differentiable at x. Then G o F' is twice differentiable at x with

V(G o F)) = Ji(a) VAG(F (@) (x) + Y o (P() V2R (x)

Example F is affine, i.e. F(x) = Az + b, R™*4 b € R™. Therefore,

V2(Go F)(z) = A"V2G(Axz + b)A.

L |
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~ Chain rule of gradient and Hessian

Proof: For the gradient, applying the chain rule of S28, we get
Jaor () = Jo(F(z))Jr(x).

But by definition of the gradient, we have Jgor(z) = V(G o F)(x)" and Jg(F(x)) = VG(F(z))'. Taking the
transpose, we conclude.
Let us turn to the Hessian, and recall that it the derivative of the gradient. Let H () ot V(G o F)(x), we have

H(x+2) = Jp(x+ 2) ' VG(F(z + 2))

= (Jr(@) + F" @)z + o(lz1)) (VG (F (@) + Jr(@)z +o(21)))

(Jr(@)+ ")z +o(lz0)) (VG(E) + V*G(F2)Jp(x)z + ofl2])
H(z)+ Jp(z) ' V2G(Fx)Jp(z)z + (F"(x)2) ' VG(F(x)) + o(||2]]).

Note that /()2 cannot be interpreted as a vector-matrix product since F”’(x) actually a 3-d tensor. In fact, it stores
the Hessian for each of the components F; of F'. With this observation, we conclude. N

L |
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Autodifferentiation

® In machine learning, many functions to deal with take the composition form
flx)y=F'oF"1o...0 Fl(x).

® A typical example is (recurrent) neural networks :

® et g(u; x) be afully connected multilayer neural network with input u and parameters x = (W1, by, Wa, bo, . ..

W, is the weight and b; the bias at layer z.
® For ¢ : R — R an activation map which acts componentwise on the entries of a vector, g(u;x) can be
defined recursively as

gO(U,QZ') = u,
9 gz(uax) :@(ngz_l(u,.fl?)—f-bz), fori = 17"'7p_17
(g(u, ) =WpgP ™ (u, ) + by.

$ The goal is to learn x by minimizing

£ = > twn, gl ).

i=1
® Denoting the affine operators A, = W,, - +b,,, we can also write

n

flx) = %Zf(vi,ApogpoAp_logpo---gpoAl(ui)).

1=1
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Autodifferentiation

® In machine learning, many functions to deal with take the composition form
flx)y=F'oF"1o...0 Fl(x).

® A typical example is (recurrent) neural networks :
$ let g(u; x) be afully connected multilayer neural network with input « and parameters x = (W1, by, Wa, bo, . ..
W, is the weight and b; the bias at layer z.
® For ¢ : R — R an activation map which acts componentwise on the entries of a vector, g(u;x) can be
defined recursively as

go(uax> = U,
9 gz(uax) :SO(ngz_l(uVr)_'_b’L)) fori = 17"'ap_17
(g(u,x) = Wypg"™H(u, ) + by.

$ The goal is to learn x by minimizing

£ = > twn, gl ).

i=1
® Denoting the affine operators A, = W,, - +b,,, we can also write

n

flx) = %Zﬁ(vi,ApocpoAp_logpo---gpoAl(ui))

1=1

® Fundamental question : how to compute efficiently differential quantities of f (typically the gradient) by
exploiting this structure.

® Autodifferentiation is about computing recursively and
efficiently the chain rule (up to machine precision), by exploiting the fact that every computer calculation
executes a sequence of elementary arithmetic operations and elementary functions.

® Two modes : forward and reverse, the reverse one is known as backpropagation in ML/NN literature. J
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- Autodifferentiation

® A concrete, yet general, example actually found in all situations of ML in mind is where
flz) =LoF'" o 0 Fo(x),

where [ is a scalar-valued function (e.g. risk in ML).
® One can compute V f(z) using the chain rule in two steps :

1. Forward pass : compute the function value and keep track of all the intermediate computations,

def

Bo=x, Biy1 = Fi(ﬁi)a f(z) =L(8).

2. Backward pass : compute the chain rule Vf(z) = Jpo(Bo) " -+ Jpi—1(Bi—1) ' V(3;) with backward re-
cursion

he = VB, hio1 S Jpioi(Bio1) hi.

L |
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- Autodifferentiation

® A concrete, yet general, example actually found in all situations of ML in mind is where
flz) =LoF'" o 0 Fo(x),

where [ is a scalar-valued function (e.g. risk in ML).
® One can compute V f(x) using the chain rule in two steps :

1. Forward pass : compute the function value and keep track of all the intermediate computations,

def

Bo=x, Biy1 = Fi(ﬁi)a f(x) = £(8).

2. Backward pass : compute the chain rule Vf(z) = Jpo(Bo) " -+ Jpi—1(Bi—1) ' V(3;) with backward re-
cursion

he = VB, hio1 S Jpioi(Bio1) hi.

® The backward step entails vector-matrix multiplications (a forward accumulation would be even more prohibi-
tive with matrix-matrix multiplications).

® The main issue is that for ML :
$ these transpose Jacobian matrices are difficult to apply ;
$ itis out of question to store them on a computer;
$ entails quadratic complexity in space and time.

® Autodifferentiation is about differentiating automatically any function which can be implemented on a computer
with the same computational cost as for evaluating the function itself.

.P_Autodifferentiation is a cornerstone of modern data science. J
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Function value evaluation N

® The key idea is that the computational graph of any computable function f can be represented as a directed
acyclic graph (DAG).

9 (xi)ie[r] the set of all scalar variables (input, output and intermediate) manipulated by the computational
graph :

® (x1,---,x4) are the input variables.
® (z441, - ,x,._1) are the intermediate variables.
® .= f(x1, - ,x,._1) is the output variable.

|
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Function value evaluation

® The key idea is that the computational graph of any computable function f can be represented as a directed
acyclic graph (DAG).
9 (xi)ie[r] the set of all scalar variables (input, output and intermediate) manipulated by the computational

graph :

® (x1,---,x4) are the input variables.

® (z441, - ,x,._1) are the intermediate variables.
® .= f(x1, - ,x,._1) is the output variable.

Computational graph
as a DAG

f(x1, 2, x3) = 26"t Sin(x3 + 1)

Iy — Xo2d4

12 /gg
Il —gé Tyg — 8901
3 %

Tg = T3 + T4

gr

x7 = sin(xg)

Output value

\

gs

g = Is5X7

-

|
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Function value evaluation

® The key idea is that the computational graph of any computable function f can be represented as a directed
acyclic graph (DAG).
9 (a;z-)ie[r] the set of all scalar variables (input, output and intermediate) manipulated by the computational

graph :

® (x1,---,x4) are the input variables.

® (z441, - ,x,._1) are the intermediate variables.
® .= f(x1, - ,x,._1) is the output variable.

f(x1, 2, x3) = 26"t Sin(x3 + 1)

12 gg Ly = X224
/V Output value
Computational graph 94 . — g™
as a DAG 1 4 \ gy T8 = T5x7
a0 B gr e /
T3 > 1 = T3 + x4 —— T7 = sin(xg)
9 Function value evaluation: forward pass as a DAG traversal:

Input : values of (z1, - - - , z4) ; scalar-valued elementary functions g; : RIParents(i]
R,d+1<:<r;
fori =d-+1tfordo
Ti = Gi(Tparents(i))s WNEIE Tparents(i) = (Tj)jcparents(i)s and parents(i) C
L 'r — 1] is the set of parent nodes of ¢ in the DAG.
return ..

L |
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~ Forward mode autodifferentiation

f(x1, 22, x3) = x2€"! sin(xg + ™)

Output value

gs

g = TsX7

/

» T = ToX
L2 /gé 5 2L4
Computational graph 94 1, = ™1 \
as a DAG L1 4 \
333 g& Tg = T3 + T4 —gz Ty — Siﬂ(ﬂ?@)

® The goal is to compute V f(z) = (

Oz
2 (x))je[d]'

® Apply the "forward” chain rule : for y = 1,...,d, compute the partial derivatives

Oxy 0g;
(9£Cj &ck .

c%z- o
8:1;j N Z

kEparents(i)

® Accumulate by forward pass (DAG traversal).

Input : values of (1, - ,2q);

Initialization : 9% = 1;
Zj

fortr =d+1tordo

Lforj—ltoddo

ox; Oxy, Ox;

return Vz,..

oz ; — ZkEParents(i) Oxj Oxy "

|
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~ Forward mode autodifferentiation

f(x1, 22, x3) = x2€"! sin(xg + ™)

Output value

gq rs = 57

12 gg Ty = XTody
C . / \
omputational graph T g4 T, =
as a DAG
\ /
XT3 gﬁ T = XT3 + T4 _gl x7 = sin(xg)
® The goal is to compute V f(x) = (%(w)) ar
J jE
® Apply the "forward” chain rule : for y = 1,...,d, compute the partial derivatives
or; Z Oxy 0g;
0a;j B , amj amkz
kEparents(i)
® Accumulate by forward pass (DAG traversal).
Input : values of (1, ,xq);
Initialization : 9% = 1;
fori=d+1tordo
forj =1toddo
oxr; __ ox Ox;
or; — Zkeparents(i) 8—:15]; oz *
return Vz,.
While natural, sub-optimal
L Complexity d times function evaluation/DAG traversal

|
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Reverse mode autodifferentiation

f(x1, 22, x3) = x2€"! sin(xg + ™)

I9 g; Ty = XTody
/V Output value
Computational graph 94 . — em
as a DAG L1 4 \ gg T8 = T5x7
333 g& Tg = T3 + X4 —gz T7 = SiIl(QZ‘G)

® The goal is to compute Vf(z) = (%(x)) il
JjE

J

® Apply the "backward” chainrule : for: = 1,...,r — 1, compute the partial derivatives

a$7~ B Z ax'r 897{

8332‘ _
kechilds(z)

® Corresponds to a backward accumulation (reverse traversal).

|
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"~ Reverse mode autodifferentiation

f(x1, 22, x3) = x2€"! sin(xg + ™)

I9 g; Ty = XTody
/V Output value
Computational graph 94 . — o™
as a DAG L1 4 \ gg T8 = T5x7
333 g& Tg = T3 + X4 —gz T7 = Siﬂ(ﬂ?@)

® The goalis to compute V f(x) = (%(az)) il
JjE

J

® Apply the "backward” chainrule :for: = 1,...,r — 1, compute the partial derivatives

a$7~ . a$7~ 89]@
0x; Z Ox, Ox;

kechilds(z)

® Corresponds to a backward accumulation (reverse traversal).

Input : values of (1, ,24);
Initialization : Vf = (0,...,0,1) € R";
foror=r—1toldo

t Vif = ZkEChilds(i) ka%'
return (V. f,Vaof,--- ,Vaf).

L |
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~ Reverse mode autodifferentiation

f(x1,22,23) = 2™ sin(x3 + 1)

-

12 gg Ty = XTody
| /v \ Output value
€T3 98 T = T3 + T4 9 = sin(xg) /
® The goalis to compute Vf(x) = (830—?“(33)) il
® Apply the "backward” chain rule : forz =1, .j. ., 7 — 1, compute the partial derivatives

Gazr . amr agk
0x; Z Ox, Ox;

kechilds(z)

® Corresponds to a backward accumulation (reverse traversal).

Input : values of (1, ,2q);
Initialization : Vf = (0,...,0,1) € R";
foror=r—1toldo

t Vif = ZkEChilds(i) ka%'
return (V1 f, Vaof,--- . Vaf).

Much better: only one (backward) pass

Theorem: Same complexity as function evaluation.

Demo Autograd

|
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https://pytorch.org/tutorials/beginner/basics/autogradqs_tutorial.html

N N

Gradient-Lipschitz functions

Definition A function f : R* — R is L-smooth if and only if it is differentiable and its gradient is L-Lipschitz-
continuous, i.e.

IVf(2) =Vf) <Lz -z, VYz,zeR
We then say that f € €, (R?).

L |
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N N

Gradient-Lipschitz functions

Definition A function f : R* — R is L-smooth if and only if it is differentiable and its gradient is L-Lipschitz-
continuous, i.e.

IVf(2) =Vf) <Lz -z, VYz,zeR
We then say that f € €, (R?).

Proposition Suppose that f : R* — R is twice differentiable. Then f € €, (R?) if and only if V2 f(x) < L -1 for
allz € RY, e,

(v, V2 f(2)y) < L|yll*, Vz,yeR?

L |
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N N

Gradient-Lipschitz functions

Definition A function f : R* — R is L-smooth if and only if it is differentiable and its gradient is L-Lipschitz-
continuous, i.e.

IVf(2) =Vf) <Lz -z, VYz,zeR
We then say that f € €, (R?).

Proposition Suppose that f : R* — R is twice differentiable. Then f € €, (R?) if and only if V2 f(x) < L -1 for
allz € RY, e,

(v, V2 f(2)y) < L|yll*, Vz,yeR?

Example (Machine learning)

® f(z) = > Ui,z ().
® [flc ‘55;1 (R) and D-bounded data, then f € ‘52;1192 (RY) (check by computing the gradient).
® [f/ is also twice-differentiable, then (see S32)

| — 1 —
= - Z (i) (vi, 2" p(ui))p(ui) "~ Lo= > p(ui)p(ua) |
: \ ’L:]. /
Covariance matrix
(Empirical)

L |
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N N

Gradient-Lipschitz functions

Proof: < Suppose that f € €' (R%). Define the function ¢, (z) = (y, V.f(z)). By the Cauchy-Schwartz-inequality,
we have ¢, € Cnghlyn (R). Thus,

by (z +ty) — dy(x)| < Lt ||y||*. (1)

Moreover, by linearity

i QoY) —dy(x) (s (V2 +ty) — VF(2)))

t—0 t t—0 t

= (y, V*f(z)y).

Using this after passing to the limitas ¢ — 0 in (1), we conclude.
= Suppose that V2 f(z) < L - 1. Then, by Taylor expansion with an integral remainder, we have

Vi) - V(z) = /O V2f(z 4tz — 2))(z — 2)dt.
Therefore

|V f(z) — Vf(2)]| < / IV + b — ) - )| < e / 1 9272+t — =) a
! (v, V2 f(z +t(x — 2))y)

5 dt < L||z — =] .
0 yeRd [yl

L |
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B N
Descent lemma
Lemma If f € €, (RY), thenVz, z € R?,
L
[f(2) = f(z) = {V[f2),z —2)| = 5 2 - x|
Clearly, f can be well approximated locally by a quadratic function.
L _
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Descent lemmma

Lemma If f € €, (RY), thenVz, z € R?,

L

[f(2) = f(z) = {V[f2),z —2)| = 5 2 - z)”.

Clearly, f can be well approximated locally by a quadratic function.

The terminology “descent lemma” will be clear when applied to algorithms

|
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B N
Descent lemma
Lemma If f € €, (RY), thenVz, z € R?,
L
[f(2) = f(z) = {V[f2),z —2)| = 5 2 - x|
Clearly, f can be well approximated locally by a quadratic function.
The terminology “descent lemma” will be clear when applied to algorithms
Proof: By Taylor expansion with an integral remainder, we have
1
F) = f@) = [ (VI + 8z =),z )t
0
Thus,
1
[f(z) = f(z) = (V[f(z), 2 — z)| = /O (Vf(z+t(z—2)) = Vf(z),z—z)dl
1
Caenysoware) < 2~ al [ 195+t~ a)) - Vi@t
O1
(Lipschitz continuity of the gradient) < HZ — x” (/ Lt HZ — xH dt)
0
<2z —af?.
L il
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Convexity

Global definition without differentiability

Definition A function f : RY — R is
convex iffVx,z € RY, Vp €]0,1]

flpr+(1—p)z) < pf(z)+(1—p)f(2).

If the inequality is strict for x # z, f is
strictly convex.

|
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Convexity

Global definition without differentiability

Definition A function f : RY — R is
convex iffVx,z € RY, Vp €]0,1]

flpr+(1—p)z) < pf(z)+(1—p)f(2).

If the inequality is strict for x # z, f is

strictly convex.
Global definition with differentiability

Definition A differentiable function f : R —

ve its tangents
R is convex iffVz, z € R?

f(z) = f(z) +(Vf(z),z — x).

If the inequality is strict for x #+ z, f is

strictly convex.

|
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Convexity

Global definition without differentiability

Definition A function f : RY — R is
convex iffVx,z € RY, Vp €]0,1]

flpr+(1—p)z) < pf(z)+(1—p)f(2).

If the inequality is strict for x # z, f is

strictly convex.
Global definition with differentiability

Definition A differentiable function f : R —

ve its tangents
R is convex iffVz, z € R?

f(z) = f(z) +(Vf(z),z — x).

If the inequality is strict for x #+ z, f is

strictly convex.
Local definition with differentiability

Definition A twice differentiable function
f : RY — R is convex iff V2 f(x) = 0,
L Vo € R,

The graph has
non-negative curvature B

CIMPA’25- 38



Convexity

Global definition without differentiability

Definition A function f : RY — R is
convex iffVx,z € RY, Vp €]0,1]

flpr+(1—p)z) < pf(z)+(1—p)f(2).

If the inequality is strict for x # z, f is
strictly convex.

Lemma (Jensen’s inequality) Let f be convex. Then for any points =+, . ..,x, € R, and scalars (p1,...,pn) €
[0, +00[™ such that " p =1, it holds

f (Z Pi$i> < Zpif(:vi)-

More generally, if X is a random variable, then

FEX]) <E[f(X)].

Proof: The first inequality follows by induction and the convexity inequality. The probabilistic version of the inequality
can be proved using the monotonicity of the (sub)derivative. N

|
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: Strong convexity

Global definition without differentiability
Definition A function f : RY — R is u-
strongly convex, i > 0, iff Vz,z € R,
Vp €]0,1]

Flpa+(1=p)2) < pf (0)+(1=p) f(2)=p(1=p) 5 llz — 2|*.

L |
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- Strong convexity

Global definition without differentiability
Definition A function f : RY — R is u-
strongly convex, i > 0, iff Vz,z € R,
Vp €]0,1] F(a)

Flpa+(1=p)2) < pf (0)+(1=p) f(2)=p(1=p) 5 llz — 2|*.

7 ~

Global definition with differentiability

Definition A differentiable function f : R — The graJh above its
R is pi-strongly convex iffVz, z € R tangent parabolas
S (%)
H 2
f(2) 2 f@)+(V (@), 2 = 2)+L |12 = 2.
T
@)+ (V@) =)+ 5 ==z
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- Strong convexity

Global definition without differentiability
Definition A function f : RY — R is u-
strongly convex, i > 0, iff Vz,z € R,
Vp €]0,1] F(a)

Flpa+(1=p)2) < pf (0)+(1=p) f(2)=p(1=p) 5 llz — 2|*.

7 ~

Global definition with differentiability

Definition A differentiable function f : R — The graJh above its

R is pi-strongly convex iffVz, z € R tangent parabolas

f(2) 2 f@)+(V (), 2 —2)+5 ||z =] *. x

f@)+ (V@) f =)+ 5 1z — o

Local definition with differentiability

Definition A twice differentiable function f : R* — R
is p-strongly convex iff V2 f(x) = u -1, Vo € RY. The graph is positively curved

|
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- Strong convexity

Example (Machine learning)

S f(z) = 3 Lvix " ().
® [f ¢ is differentiable and p,-strongly convex, then for all x, z and i € [n],

O(vi, 2 (1)) > Evi, 2T (i) + € (01,2 o) (= — ) Top () + HE (2 — )T o)
= {(vi, 37 plus)) + € (00, () (2 — ) Tip(us) + B2z =, plui) plui) T (2 — 7)),

Averaging over 1 and the chain rule to see that

V@) = 2 30T o)),

we have

flz) =2 f(z) +(Vf(z),z —z) + M;<Z -, <Tll Z @(ui)w(ui)T> (2 — l‘)>-

® | is strongly convex iff the covariance matrix + >, o(u;)p(u;) ' is invertible (low correlation/dimension,).
® |flack of strong convexity, add 5 |- |I” to f : be careful with the choice of 1 to avoid additional bias.

L |
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: Why (strong) convexity

® Convexity is preserved under many operators : e.g.
$ positive sum,
®» post-composition by an affine operator,
$ max of a family of convex functions is convex.
® Convexity allows for duality theory.

L |
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~ Fermat’s rule and role of convexity

@® Global minimizer

Definition The set of critical points of a ® Local minimizer ] € Crit(f)

@® Local maximizer

differentiable function f is

Non-critical Minimizer Maximizer Strict saddle Flat saddle

L |
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~ Fermat’s rule and role of convexity

@® Global minimizer

Definition The set of critical points of a ® Local minimizer ] € Crit(f)

@® Local maximizer

differentiable function f is

Non-critical Minimizer Maximizer Strict saddle Flat saddle

Theorem [If x* is a (local) minimizer of a smooth differentiable function f, then V f(x*) = 0.

L |
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~ Fermat’s rule and role of convexity

@® Global minimizer

Definition The set of critical points of a ® Local minimizer ] € Crit(f)

@® Local maximizer

differentiable function f is

Crit(f {a: cRY: Vf(x)= ()}
' ’ @& G - . <A .
Non-critcal Minimizer Maimizer Strict saddle Flat saddle

Theorem [If x* is a (local) minimizer of a smooth differentiable function f, then V f(x*) = 0.

Proof: If x* is a local minimizer, there exists ¢ > 0 such that

f(x*+2) > f(x*), VzeB0).
By Taylor formula, we get Vz € B.(0)
(=Vf(z),z) <o(|lz])
or, for any unit norm vector z,
(=Vf(z7),2) < o(1).

Uhis shows that (—V f(x*), z) = 0, and since z is arbitrary unit norm vector, we have necessarily V f(x*) = 0. IJ
CIMPA25 43



" Role of convexity in minimization

® |Ingeneral, Argmin (f) C Crit(f).
Rd
® { convex : all critical points are global minimizers (when they exist), i.e.

Crit(f) = Argmin (f).
Rd
Check this with the (tangent) convexity inequality on S42.
® { strongly convex : f has a unique minimizer.
Check this with the (tangent) strong convexity inequality on S44.

L |
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. Smooth convex functions

Theorem The following holds :
® Iff €€ (RY) is convex, thenVz, z € RY,

1
o7 IVF(2) = V@) < f(2) = fa) = (VF(2),2 —x) <
® Iffe %”Ll’l(Rd) is twice differentiable and convex, then Vx € R?,
0=<V*f(x) < L-I

® [f f is differentiable and j-strongly convex, thenVz, z € R¢,
M 2 1 2
o Iz —=lI" = f(z) = f(z) = (Vf(2), 2 —x) < o IVf(z) = Vi) .

® ffc %”Ll’l(Rd) is twice differentiable and p-strongly convex, then Vz € R?,

1/ L small pn/L~1 X [ VZf(a;‘) <L -1

/8@

L |
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N N

Smooth convex functions

Proof: We focus on the proof of the first and third claims. The second and and fourth ones follow the same lines as
in the proof in S40, but using the definition of (strong) convexity and Taylor expansion.

Fix z € R? and consider the function ¢(z) = f(z) — (x, Vf(z)). Obviously, ¢ € €' (R%). It is also convex with z
as a global minimum. Thus, applying the descent lemma (see S41) to ¢, we get

o2) <6 (2 - Vo))
< 0(z) — 1 (Vo) 7 — ( —~ Vo@)/D) + 5 |z — (@ = Vo@)/D)* < olx) ~ o= V(@)
Thus
F&) — {2 VF(2) < f(a2) — (@.V(E) — o V(@) ~ V)P

which is our claim.
Now, if f is p-strongly convex, then so is ¢, and for all y € RY,

¢(z) = min d(y) > min {§(x) + (Vé(x),y —2) + &y — ] *}
The minimum on the rhs is attained at which y — z = —V¢(x)/u, which leads to
1 2
0(2) 2 6(z) = | Vo(@)|].
7
Replacing ¢ and V¢ by their expressions leads the claim. N

L |
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L 0 N

Global quadratic error bound -

As a corollary of the previous theorem, if f is differentiable and pu-strongly convex, then for x* € Argmin ( f)
(denote f* = min f) :
1 2
fla) = [ < oM IVi@)°, VoeRe
This is known as a global Lojasiewicz property (with Lojasiewicz exponent 1/2) : we will write f € £(1/2).

In fact, it also holds in the non-convex case, e.g. f(x1,x2) = (sin(x1) — 2)2.
In ML, many call it (somehow unduly) the Polyak-t.ojasiewicz property.

|
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B o
Global quadratic error bound
Definition A function f € C?(R?) will be Morse if it satisfies the following condi-
tions :
® For each critical point &, V2 f () is nonsingular.
® There exists anonempty setl C N and (21, )rer such thatcrit(f) = (U, o 12x }-

® Morse functions are generic in the Baire category sense in the space of C* functions.
® Morse functions are £(1/2) around each critical point.

L |
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N 0 N
Global quadratic error bound
Proposition If f € £(1/2), then it satisfies the quadratic growth condition (quadratic error bound)
flx) = f* = Sdist(w, Argmin (f))’
for all = close to Argmin (f).
L |
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: Global quadratic error bound

Proposition If f € £(1/2), then it satisfies the quadratic growth condition (quadratic error bound)

flx)— f*> gdist(:c,Argmin (f)?

for all = close to Argmin (f).
Proof: For any y € R?, consider the solution trajectory to the ODE & (t) = —V f(z(t)), with initial condition z(0) = y,
which has a global classical solution by the Cauchy-Lipschitz theorem. Define Af(x) = f(x) — min f. We have for
anyt >0

d 0,950 IV A —
VAT = s =~y = VR IV = —VaRlE0l

< —py/Af(z(t)), (2)

where we used that f € £(1/2) twice. Applying Grénwall inequality to (2) shows that f(x(t)) — min f exponentially
as t — +o0o. Now integrating (1) from 7 to s forany 0 < 7 < s, we get

. 5o 2 [ d 2
st < [Chsoiacs -2 [ 4 VAfa@ - |2 (VATGE) - VATEG))
(3)
This shows that @(-) € L!(]0, +o0[) and thus z(-) has the Cauchy property. Hence x(-) converges as t — +oo to
say Z. The latter is necessarily a global minimizer as we have already shown that f(z(¢)) — min f. Taking 7 = 0

lz(s) = z(7)]| =

and s — o0 in (3) entails that

dist(y, Argmin ) < ly = 7 < /2 (7() i ).

L N
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Toolbox on sequences.

Outline
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L I

A bit of notations -

We denote by (€2, 7, P) a probability space with set of events 2, o-algebra F, and probability measure P.
The Borel o-algebra on R¢ is denoted B.

A R?-valued random variable is a measurable map = : (Q, F) — (R%, B).

A filtration F = (Fi ),y 1S @ sequence of sub-o-algebras which satisfies 3, C Fj, 11 forall & € N.

Given a set of random variables {ag,...,ar}, we denote by o (ag,...,a;) the o-algebra generated by
ag, - - -, ax. Typically, for a stochastic iterative algorithm, 7, = o (ag, . . . , ax) is the information up to iteration
k.

An expression (P) is said to hold (P-a.s.) if P ({w € Q2 : (P) holds}) = 1.

Throughout the class, both equalities and inequalities involving random quantities should be understood as

holding P-almost surely, whether or not it is explicitly written.

|
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A bit of notations -

® We denote by (€2, F,P) a probability space with set of events 2, o-algebra F, and probability measure P.

® The Borel o-algebra on R is denoted B.

® A R<valued random variable is a measurable map z : (2, F) — (R4, B).

® A filtration .# = (F),cn iS @ sequence of sub-c-algebras which satisfies F, C Fj1 forall k € N.

® Given a set of random variables {aq,...,ar}, we denote by o (ag,...,ar) the o-algebra generated by
ag, - - -, ax. Typically, for a stochastic iterative algorithm, 7, = o (ag, . . . , ax) is the information up to iteration
k.

® An expression (P) is said to hold (P-a.s.) if P({w € Q: (P) holds}) = 1.

® Throughout the class, both equalities and inequalities involving random quantities should be understood as

holding P-almost surely, whether or not it is explicitly written.

Definition Given a filtration .7, we denote by ¢, (%) the set of sequences of |0, +oo|-valued random variables
(ak) ey SUch that, for each k € N, ay, is Fj, measurable. Then, we also define the following set,

0L (F) def {(ak)keN cly (F): Zak < +oo (P-a.s.) } :

L |
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Modes of convergence

® Our goal for algorithms : show that x;, — & or dist(xy, Argmin (f)) — 0 or f(xr) — min f — 0.
Rd
® What sense to be given when z;. is random ?

® Boils down to studying in what sense a random quantity 0, € R tends to zero :
® Convergence almost-surely : P(dx — 0) =P ({w € Q: d(w) — 0}) = 1.
® Convergence in probability : Ve > 0, P(|dx| > €¢) — 0.
® Convergenceinmeanr > 1:E(|dx|") — 0.
® Relationship between convergences :
Almost surely = in probability.
In mean =- in probability (Markov inequality).
In probability (sufficiently fast) = almost surely (Borel-Cantelli lemma).
In mean (sufficiently fast) = almost surely (Markov inequality+Borel-Cantelli lemma).
Almost surely + domination =- in mean (dominated convergence theorem).

eeoe0ob0b0

L |
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- Robbins-Siegmund lemma -

Lemma (Nonnegative almost supermartingales) Given a filtration .% and the sequences of random variables
(%) ken € 44+ (F), (ar) ey € 44+ (F), (Ok) ey € & (F) and (Br) ey € @ (%), satisfying,

K [Tk+1 | .Fk;] < (1 + Oék)?“k — ay + Ok (IP’-a.s.)

then (ai),cn € 04 (F) and (i) oy converges (P-a.s.) to a random variable valued in [0, +oo].

|
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Lemmas on random sequences

Proof: The complete proof can be found in . We here give a sketch. Let
k
Ve = H(1 + ;)" T = Ye—1Tk, Q) = Veak, and By, = v Sy
1=0

All these variables are F; measurable. Multiplying the inequality of the lemma by ~x and using that +; is non-negative
and decreasing, it follows that (P-a.s.)

E [rh41 | Fi] < 1% —ai + By (1)
and 25’; < Z Br < +00. (2)
kEN kEN
Let k1
s =11 — Y (B —aj)). 3)
1=0
From (1), we have
k k—1
E[sp1 | Fel =E |7y — > (Bi—a}) I<| 15, — > (B — a}) = sy,
i—=0 i=0

and thus, (s),cy IS @ supermartingale. It then follows from the Doob’s martingale convergence theorem that

lim sy exists and is finite (P-a.s.) .
k— o0

Hence, by (3) and (2), limy,_, o 7}, exists and is finite (P-a.s.),and ), ya) < +oo (P-a.s.) . Now, observe that
/v = Hfzo(l + a;) is convergent since (o), o IS summable. It then follows from this and

Tk =T/ Ve-1

that (), cy is convergent (P-a.s.) . Similarly, since
+00

ar = ap/y < aj, | [ (1 + ),
1=0

D ey @k < +oo (P-as.) . | J
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Lemmas on random sequences

Lemma Given a filtration .7 and the sequences of random variables (1), € ¢+ (F ), satisfying
K [Tk+1 ‘ Fk] < (1 — ozk)rk + B (P-&.S.) :

where
ap € 10,1], B >0, Z()ék = +00.

(i) IfY ey Br < +oo, thenr, — 0 (P-a.s.) .
(ii) If £ — 0, then E[r),] — 0.

L |
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- Lemmas on random sequences

Proof: (i) Applying the Robbins-Siegmund lemma in S55 (with a; = ay7%), we conclude that r converges (IP-a.s.)
and ), yorrr < +oo (P-as.) . Since (ax),.y iS NOt summable, we have that (easy to prove by a simple

contradiction argument) liminfry =0 (P-as.) .
k—+o0

But since the limit exists, we get the claim.

(if) Taking the total expectation on both sides of the inequality, we have
Elrg1] < (1 — aw)Elre] + Be. (1)
To lighten notation, denote b, = E[r;]. We get from (1) that b, obeys
b1 < by, — apby + By
Let 6 €]0, 1], and denote the two complementary sets
I ={k: Br > 0aib}, I° ={k: Br < Oayby}.
Two cases are possible :

(a) I is finite. Thus, for k large enough, say £ > K, k € I° and hence

bk_|_1 S bk — (1 — Q)kak S bk. (2)
Thus by is non-negative and decreasing, and so it does converge. On the other hand, summing (2) for £ larger
than K, we have (1—0) Z apbr < by < +oo.
k>K

Recalling that (ak>keN is not summable, we have that lim infy_, 1 - by = 0, but since we have proved that by
converges, we get b, — 0.

(b) I is infinite. Then for k € 1, w < Qﬁ_k N
g

L and we passed to the limit since I is infinite. J
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Lemmas on random sequences

Lemma Given a filtration .7 and a sequence of random variables (wy,),. .y € £+ (F) and a sequence (ay,);.cy €
(4 such that (apwy) ey € L4 (F) and (o) ey € ' Then liminfy_, o wi, = 0 (P-a.s.) . Assume, moreover, that
there exists a constant v > 0 such that

Wwr — K [’wk_|_1 ‘ fk] < voy (P-&.S.)

forevery k € N, then
lill{?aw;C =0 (P-as.) .

L |
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Lemmas on random sequences

Proof: Let 8 > 0, and define the complementary sets
I={keN: w, <0 (Pas.)} I°={keN: wy>0 (P-as.)}.

By our assumptions, we know that there exists a subsequence (wy, ) <y Such that lim; oo wi;, = 0 (P-as.), and

J
thus I is infinite. Since (axwe) ey € 4 (F), we also have

+00 > Zakwk > Z apwg > 0 Z Ok (IP-a.s.) .

keN kele kele
Thus, for all € > 0, there exists k. such that

0 >  ar<e/(dv) (Pas) .

kclc k>k.

Taking 6 = €/2, this shows that Z ap <e/(2v)  (P-as.) .
kelc k>k,
Now, for all & > k., there are two possibilities :

(@) k € I, which is equivalent to wy < ¢/2 < e (P-a.s.).
(b) keI Let m=min{jel: j>k},
which exists since [ is infinite. Hence, we have
wi = (Wi — Elwy, | Fr]) + E [wp, | Fil

(wy, known cond. on Fi) = E [wy, — wy, | Fi] + E [wy, | F]

m—1
(telescopicity and conditional expectation) = Z w; — Ewigr | Fil | Fie| +E [wam | Fil
=k

m—1
(by assumptionon wy) < v Z a; + €/2
1=k

IA

(I°5k,m—1>k,and(1) <v Y a+e/2<¢€ (P-a.s.) .

lele >k,
In both cases, we have shown that (PP-a.s.) , for all ¢ > 0, there exists k. such that for all & > k.
Wi S €

which is nothing but w;, — 0 (P-a.s.) . This concludes the proof.

|
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: Chung lemmas -
Lemma Letry > 0 obeying
"“k+1§(1—%)7°k-|—k;il, p,c,c > 0.
Then
ri <d(c—p) kTP + o0 (k7P) ifc > p,
e — O (10%@) fe—p.
ry = O(k™°) ifp > c.
- B
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Chung lemmas

Lemma Letry > 0 obeying
/

C C
Tk+1§(1_E)Tk+kp+17 p,c,c/>0.
Then
e < e —p) kK 4o (K7) e >p,
log(k) .
rk—0< T ) ifc = p,
ri = O(k™°) ifp > c.
Lemma Letr; > 0 obeying
/
T+l < (1—%) r;ﬁ—%, s €|0,1],s < t.

Then

< =9 4 g (k=)
C

|
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Chung lemmas
Lemma Letry > 0 obeying
c c
rk+1§(1_E)rk+kP+1a p,C,C/>O.
Then
e <c(c—p) TR +o (k77) te>p,
B log(k) .
rk—O( T ) ifc = p,
ri = O(k™°) ifp > c.
Lemma Letrg > 0 obeying
/
T+l < (1—%) m%—%, s €|0,1],s < t.
Then
¢ (=) ~(t—s)
r. < —k ) 4+ o0 (k ° ) .
C
Proof: See Lemma 4 and Lemma 5 in : B
L |
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Outline

Deterministic smooth optimization.
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Gradient How
min f(z), f € € (R

rER4
® Gradient descent dynamic ( ):t €0, 40|

#(t) + Vf(x(t) = 0.

®» \Velocity = (opposite) of the gradient.
® Gradient : a force deriving from the potential energy.

L |
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Gradient descent |
min f(z), f€C R
® Gradient descent dynamic ( )1t €0, 400]
(t) + Vf(x(t)) =0.
® Temporal discretization :
xk+1%— ok ~Vf(xg), =0
. _
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- Gradient descent
min f(z), f€C R
® Gradient descent dynamic ( )1t €0, 400]

#(t) + Vf(z(t)) = 0.

® Temporal discretization :

LT Tk T f ()
Vi |

Input : gradient function Vf, step-size sequence
(V&) pens> To, Stopping rule ;

Initialization : £ = 0;

while Stopping rule not satisfied do

L Tht1 = Tk — WV (2k);

k+—k+1.
return x,.

L |
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. Gradient descent
min f(z), f € € (R

rERI

® Gradient descent dynamic ( )1t € |0,+o0]

#(t) + Vf(z(t) = 0.

® Temporal discretization :

L1 — Tk
= =V (o),
Yk f(@n)

Input : gradient function Vf, step-size sequence

(V&) pens> To, Stopping rule ;
Initialization : k = 0;
while Stopping rule not satisfied do
L Trp+1 =Tk — VeV [(Zk);
k+—k+1.
return x;..

® Simple, yet efficient and most widely used algorithm.

® Its cost/iteration: dominated by the gradient computation.

|£ In ML with finite sums: n times the gradient of the loss (hence the motivation of stochastic versiorﬂ.
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Gradient descent
min f(z), f € € (R

rERI

Input : gradient function V f, step-size sequence
(V&) gens> To, Stopping rule ;

Initialization : £ = 0;

while Stopping rule not satisfied do

L Try1 = Tk — Y V.S (Tr);

k+— k—+1.
return z;.

® Another useful view of gradient descent update :

: 1
Tp1 = argmin f(zg) + (Vf(25), 2 —zp) + 5 ||l = ol
rERY Yk
® ie., approximate f by a quadratic function and then optimize, and repeat.
® Forf e %g’l(Rd) and v, = 1/L, the quadratic approximation is actually a majorant : remember the descent

lemma in S41 .

L |

CIMPA’25- 61



Gradient descent
min f(z), f € € (R

rERI

Input : gradient function V f, step-size sequence
(V&) gens> To, Stopping rule ;

Initialization : £ = 0;

while Stopping rule not satisfied do

L Trt1 = Tk — VRV f(Tk);

k+— k—+1.
return z;.

® Another useful view of gradient descent update :

: 1
Tp1 = argmin f(zg) + (Vf(25), 2 —zp) + 5 ||l = ol
xERA Yk

i.e., approximate f by a quadratic function and then optimize, and repeat.

L I

For f € %g’l(Rd) and v, = 1/L, the quadratic approximation is actually a majorant : remember the descent
lemma in S41.

® How to choose the step-size ? Not too large, not too small (e.g. line search, steepest
descent or constant step-size).

® When does this algorithm converge ?
® What quantity does converge (several criteria to characterize convergence) ?
® At which rate ?

I— ® lteration complexity ? J
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~ Gradient descent: smooth non-convex

min f(z), f €€ (RY)

xERY
Theorem Suppose that f € CKLl’l(]R{d) and bounded from below, and that vy, = v €]0,2/L][. Then
(i) f(xk) converges.

(i) S pen |V £ ()| < +o0.
(iii) V f(z1) — 0 with the rate

. (f(xo) —min f)/(v(1 — Lv/2))
min [V f(zi)] < \/ . :

iclk—1

(iv) If (x1),cy is bounded, then every accumulation point of (xy,),. . IS a critical point of f, i.e. dist(xy,, Crit(f)) — 0.
(v) If Argmin (f) # 0, f € £(1/2) and~y = 1/L, then
S51
k ) .
f(zg) —min f < (1 — %) (f(20) — min f) < exp™ *(f(xo) — min f),

2
x, — x* € Argmin (f) at the rate ||z, — z*||” < exp~ £F = (f(x) — min f).
v

L |
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~ Gradient descent: smooth non-convex

min f(z), f €€ (RY)

xERY
Theorem Suppose that f € CKLl’l(]Rd) and bounded from below, and that vy, = v €]0,2/L][. Then
(i) f(xk) converges.

(i) S pen |V £ ()| < +o0.
(iii) V f(z1) — 0 with the rate

. (f(xo) —min f)/(v(1 — Lv/2))
min [V f(zi)] < \/ . :

iclk—1

(iv) If (x1),cy is bounded, then every accumulation point of (xy,),. . IS a critical point of f, i.e. dist(xy,, Crit(f)) — 0.

(v) If Argmin (f) # 0, f € £(1/2) and~y = 1/L, then
S51

f(zk) —min f < (1 B %)k (f(zo) —min f) < exp™ Z*(f(z) — min f),

2
x, — x* € Argmin (f) at the rate ||z, — z*||” < exp~ £F = (f(x) — min f).
v

® Ingeneral : one needs k > (f(xg) —min f)/(~(1 — Lv/2))e ™2 to achieve precision ¢ in the gradient =

at least O(e—2) gradient evaluations.

® Under the the 1/2-Lojasiewicz property : one needs k > %log(s_l) to achieve precision € on f and

dist(-, Argmin (f))? = at least O(log(¢~!)) gradient evaluations.

. ® Coercivity of f is a sufficient condition for boundedness of () xen. |
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~ Gradient descent: smooth non-convex

Proof: (i) We have

L
(Descent lemma in S41) f(xrs1) < fxk) +(Vf(xk), Troo1 — k) + 5 Tkt — :UkHQ
. L
(Gradient descent) = flax) + (Vf(r), =7V f(zx) + 5 =9V f (p)[I”
= fax) —y(1 = Ly/2) IV f ()] (1)
By the condition on the step-size (fi),cy iS @ decreasing sequence, and since f is bounded from below, (fx).cy
converges.

(ii) Summing inequality (1), we have for all k € N

k—1 k—1
(1 = Lv/2) Z IV f(z)]” < Z(f(%) — f(ziy1)) = f(wo) — fzx) < f(w0) —min f < +oo.  (2)

Taking the limit as £ — 400, we get the claim.
(iii) V f(zr) — 0 follows the summability result of (ii). Now from (2), we get

k—1
(1 = L7/2)/<i6ff]l€ifll] IV f@)l” <71 = Ly/2) Y IV f(@:)]” < f(xo) — min f.
1=0

(iv) Since (xk)keN is bounded, it has convergent subsequences. Let (a:kj)jeN be any convergent subsequence, and
x its accumulation point. Then by continuity of V f and claim (iii), we have

Vfi(z)= Vf(jli)rgoa:kj) :jli{gOVf(xkj) = kli)rglOVf(xk) =0,

meaning that = € Crit(f). Now, since dist(-, Crit(f)) is continuous because Crit( f) is closed, we obtain

lim  dist (g, Crit(f)) = dist( lim ay,, Crit(f)) = dist(z, Crit(f)) = 0.
J—+0o0 J—+0o0
The limit being unique (0) for any convergent subsequence (:pkj )jeN means that the whole sequence (dist(xy, Crit(f))
L actually converges to 0. | J
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~ Gradient descent: smooth non-convex

Proof: [Continued] (v) In this case (i.e. v = 1/L), (1) reads

f(zk) —min f < f(zg—1) —min f — — va(ﬂ«”k: DI* (3)
When f € £(1/2) (see S51), we get
f(zx) —min f < (1= p/L)(f(zx-1) —min f) < (1 1/L)*(f(20) — min f) < exp(—p/L - k)(f(x0) — min f),
where the last inequality comes from the fact that 1 — ¢ < e~!. For the last bound, we invoked the quadratic growth bound in S51

For the convergence of the sequence (xk)keN, we will show that its has a finite length and is thus a Cauchy sequence. Denote for short

Ay ¥ f(zg) —min f. If Ay, = 0z € Argmin (f) for some k > 0, then this holds for all i > k, and thus there is nothing to prove. We

thus suppose that A # 0. By convexity of —/-, we have

VA > A 1_Ak—Ak 1

Ap_q
flre—1) — f(xg)

= —/Ar_1+
: 20/ Ap_1
!|Vf(93k:—1)\|2
> —\/Ap_1+
(By (3)) 1 A

IIVf(xk: DI’
" . /AL
(The L(1/2) condition in S51) = —v/ Ak—1 + La2 [ (o)

A1+ =7 \/T IV(

e

(Gradient descent) = —/Ap_1+4/ @ |lxr — xK—1]| -

By the telescopic sequence, we have

S llok = a1l < VBV By = v/Bpiy/F (o) — min f < +oc.

k>1
This entails that x; converges to say z. But we know that accumulation points of (z), .y are in Argmin (f). Indeed, we have by
continuity of f that F(@)=f( lim )= lim f(zx)=minf = Z € Argmin (f).

k—-+oc0 k— 400

Since f € £(1/2), this together with S51 implies that f(xx) — min f > T — x*|? 2, which concludes the proof.



B : N
Gradient descent: smooth convex
min f(z), f € ;" (R?) and convex

Theorem Suppose that f € €' (R?), boa;,/%ded from below and convex, that Argmin (f) # () and~, =~ €]0,2/L].
Then

() Spenk IV F@i)|? < +o0 = [V ()| = o(k~/2) and minepy ||V £ (zx)| = Ok,

(i) f(xy) converges to min f at the rate

f(z) —min f = O(1/k).
(iii) The sequence of iterates (), converges to a point in Argmin (f).
(iv) Ifv €]0,1/L], then
(L/2)dist(zq, Argmin (f))?
f(xr) —min f < k and f(xy)—min f = o(1/k).

L |
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Gradient descent: smooth convex

min flx), fe%€ " (RY) and convex
reR
Theorem Suppose that f € €, ' (R%), bounded from below and convex, that Argmin (f) # () and~;, = v €]0,2/L|.

Then
() L K [VF(@e)l* < +00 = |V f (@)l = o(k~1/?) and min;epy |V f(2x)]| = O(k).

(i) f(xy) converges to min f at the rate

f(z) —min f = O(1/k).
(iii) The sequence of iterates (), converges to a point in Argmin (f).
(iv) Ify €)0,1/L], then
(I/2)dist (w0, Argmin (f))?
k

f(xr) —min f < and f(xy)—min f = o(1/k).

® One needs k > Ce~! for some constant C' > 0 to achieve precision € on the function values f = at least
O(e~1) gradient evaluations.
® The term dist(zg, Argmin (f)) may hide dependence on the dimension d.

L |
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Gradient descent: smooth convex

Proof: There are several proofs many of which require v €]0,1/L]. We here provide a general, yet simple, one
which is based a Lyapunov analysis and holds for v €]0,2/L|. To lighten notation, denote p dof v(1 —~vL/2). Take
any z* € Argmin (f). Define the sequence :

e . 1 N
Vi © k(f(x1) — min f) + 3 llzn == [

This is a non-negative sequence. We will now show that it is decreasing. We have

Vit1r — Ve = k(f(xr41) — f(zr)) + f(Zpg1) —min f + % (||~”Ek — AV f(zk) — ¥ = ||lzk — 56*||2)
= k(f(zr41) — f(zx)) + f(Th41) — min f + % (-27<Vf(-%’k),56k — ") + 7 ||Vf(37k)||2)
(Descent lemma in S41)
<k <<Vf<xk>, Pher =2k} + 5 ks — xk\F) + flwp) = min f — (VS (o) 2n = 2%) + 3|V ()]

(Gradient descent step) 5 ~ 5
= —kp IV f@)lI” + (f(2r+1) —min f = (Vf(2p), 2 —27) + 3 [V f (@)
((1) in S67)
< —kp IV F(@e)|* + (f) = min f = (Vf(@e)an —a*) = pIVF@)]° + 5 |Vl

(Theorem in S49) 1

< ko |[VI@)I = 37 IVF @) I* = pIV £ @) IP + 5 19 (e .

L1
Let kg such that kg > 7L7(2—7L) — 1. Thus

Vet — Vi < —(k — ko)p [V ()2 — ((ko + 1o+ o — g) IV F )l

Under the assumption on ko, we have ((ko + 1)p + 5= — ) < 0, and thus
Vitr — Vi < —(k — ko) ||[V.f(z1)]%. (1)

L |
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Gradient descent: smooth convex

Proof: [Continued]
(i) (1) tells us that (Vk)kao is decreasing, and since it it non-negative it converges (and in particular is bounded).
Summing (1) over & > ko, we have P Z L va(ﬂik)Hz < Vi < +o0.
k> ko
(i) We have from (1) and for k > kg k(f(zg) —min f) < Vi < Vi,

from which we get the rate and thus f(z;) — min f — 0 by passing to the limit.
(iii) We have by gradient descent and convexity of f

lonpr = 2*|* = llzw — 27 [° = 2V f (@) 2 — 2%) + 92 [V F ()]
(1stitem in Theorem in 849) < ||zx — z*||* — 2v(f(z) — min f) — % IV F@)ll® + 2V F ()|
= |l — 2*))* = 29(f(wx) — min f) — /L (1 = L) |V f ()] (3)
<oy — ¥ ||* = /L (1 =~AL) |V f ()]

Let p = /L (1 —~L). pis positive for v €]0,1/L] and negative for v €]1/L,2/L]. Thus
2 2 2
lerr = 2|17 < lzw — 217 + [l [V (zi)]]” -

We have shown in (i) that (k HVf(a:k)||2)k . is summable, and thus so is (||Vf(:ck)H2)k x Therefore
c c

2 2
|zpt1 — 2" < [lze — 27[|” + Br

where ;. is summable. It follows from the lemma in S55 that (||z — 2*||),cy coOnverges. In particular (zx ),

is a bounded sequence, and we can then extract converging subsequences. Arguing as in the proof of the non-

convex case (see claim (iv) on S66), we easily see that for any convergent subsequence (xkj) T, — T €

JEN’
Crit(f) = Argmin (f) (the last identity follows by convexity of f). Thus, since (||zy — 2*||),cy converges for any

x* € Argmin (f), we apply this at z* = Z to infer that

L 0=

lim Tl — T

| = lim ||z, — Z|| = lim ||z — Z| . J
Jj—00 k— o0
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—

Gradient descent: smooth convex

Proof: [Continued]

(iv) We have already shown in claim (i) above that (V%) converges, and from (i) that (||zx — 2*||),cy also
converges. It then follows from the definition of Vj, that limy_, . k(f(zr) — min f) exists.

We embark from (3) to get

|zkgr — 2| < ok — 2*))* = 29(f(wx) —min f) =y (1/L =) |V f ()]
Discarding the last negative term and using the telescopic property, we deduce that

S (f(xr) — min f) < ag — a*|* < +oo.

keN

Denote 5, = k(f(xx) — min f). We then have

S <o
. .
keN
Since (1/k), oy is not summable, it follows that lim infy_. | o, 6x = 0. But we have started by precisely showing that

Jr has a limit and thus this limit is 0. In turn,
lim k(f(rg) —min f) = lim & = 0.

k— +o0 k—+o0

This completes the proof. B

L |
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" Gradient descent: smooth strongly convex

min f(z), f € ;" (R?) and convex
Te

Theorem Suppose that f € %é’l(Rd) and strongly convex and v, = v € 1/L. Then

= a? < fan) — min f < (1= /LY (f (o) — min f).

L |
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" Gradient descent: smooth strongly convex

min f(z), f € ;" (R?) and convex
Te

Theorem Suppose that f € CKLl’l(IR{d) and strongly convex and v, = v € 1/L. Then

= a? < fan) — min f < (1= /LY (f (o) — min f).

® Oneneeds k> C+/L/u)log(1/e) for some constant C' > 0 to achieve precision .
® This linear rate can be slightly improved to (1 — u/L)/(1 4 p/L), We omit the details here.

L |
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" Gradient descent: smooth strongly convex

min flx), fe%€ " (RY) and convex
reR

Theorem Suppose that f € CKLl’l(IR{d) and strongly convex and v, = v € 1/L. Then

= a? < fan) — min f < (1= /LY (f (o) — min f).

® Oneneeds k> C+/L/u)log(1/e) for some constant C' > 0 to achieve precision .
® This linear rate can be slightly improved to (1 — u/L)/(1 4 p/L), We omit the details here.

Proof: Since f is u-strongly convex it has a unique minimizer x* and verifies the 1/2—ojasiewicz property (see S51).
We get the claim from Theorem S66(v). |

L |
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Optimal convergence rate: smooth convex

® First-order method : any iterative algorithm that selects zj, in xg + span(V f(xg),..., Vf(zr_1)).
® Problem class : convex Cﬁg’l(Rd) functions with a global minimizer x*.

Theorem ( ) Foranyk < (d —1)/2 and any zo € R?, there exists a convex function
f e ‘KLl’l(Rd) such that any first-order algorithm satisfies

3Ldist(xo, Argmin (f))?

f(x) — min f > 320k £ 1)

L |
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Optimal convergence rate: smooth convex

® First-order method : any iterative algorithm that selects zj, in xg + span(V f(xg),..., Vf(zr_1)).
® Problem class : convex Cﬁg’l(Rd) functions with a global minimizer x*.

Theorem ( ) Foranyk < (d —1)/2 and any zo € R?, there exists a convex function
f e ‘KLl’l(Rd) such that any first-order algorithm satisfies

3Ldist(xo, Argmin (f))?

f(x) — min f > 320k L 12

Conclusions
® Gradient descent (rate O(1/k)) is not optimal on this class of functions.

® Therate O(1/k2) is.

® Can we design an algorithm to do so ?
® Yes: the key is inertia (mostly called momentum in machine learning).

L |
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Inertial gradient dynamic
min f(z), f € €'(RY)

rERA

® Inertial dynamic with asymptotically vanishing viscous damping ¢t € [to, +o0],
to > 0

ay
X
X
*
7
2.

Mechanical interpretation : 7 : friction. ﬁ : reaction. 8 . gravity.

L |
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Inertial gradient algorithm
min f(z), f € €'(RY)

rcRd
® |Inertial dynamic with asymptotically vanishing viscous damping ¢ € [tg, +00,

to >0

(1) + %j:(t) LV (z(t) =0, a>0.

® Temporal discretization with time-step /7 :

Tyl — 2Tk + Tp—1 = &
gl ky

(ajk — xk—l) T vf(yk) — 07 a > 0.

|
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Inertial gradient algorithm
min f(z), f € € (R

rER4
® |Inertial dynamic with asymptotically vanishing viscous damping ¢ € [tg, +00|,
to > 0:

ﬂﬂ+%ﬂﬂ+Vﬂﬂmzﬁ,a>O

® Temporal discretization with time-step /7 :

T — 22 + T Q
ot ;’ k1+kvwhﬂm4)+VﬂmJ:Q a > 0.

Input : gradient function V f, step-size v, xy, r_1, stop-
ping rule;
Initialization : k = 0;

while Stopping rule not satisfied do

Y = Tk + (1 — %) (xp — Th—1); Argmin (/) y
Tht1 = Yk — YV (Ur); Tht
k< k+1.
return x ..

L

CCk:— 1

|
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Inertial gradient algorithm
min f(z), f € € (R

rER4
® |Inertial dynamic with asymptotically vanishing viscous damping ¢ € [tg, +00|,

to >0

(1) + %j:(t) LV (z(t) =0, a>0.

® Temporal discretization with time-step /7 :

Tpt1 — 20k + Tp—1 =
gl ky
Input : gradient function V f, step-size v, xy, r_1, stop-

(xk — xk—l) T vf(yk) — 07 a > 0.

ping rule;
Initialization : £ = 0;

while Stopping rule not satisfied do %_1
Y = Tk -+ (1 — E) (CUk — QEk_l), Argmin (f) U
Th+1 =Yk — YV (Yr); x’f“
| k< k+1.
return z;..

® Same complexity as gradient descent.
® Keep two previous iterates.
® Its cost/iteration: dominated by the gradient computation.

® In ML with finite sums: n times the gradient of the loss (hence the motivation of StOChaStiCC\fI\GAEA%ESJ.
'25- 72



Gradient descent vs Inertial version

09F

X adient descent (g/
@) gradient degc’ent |
X
&
®
- X
2
X —
// s
6< 0.4
/
/X
= \ X | \
I, 03 \ N\
03l Qf{ \
0.2 1\\ N o 0.2 \
o1l \ S
\\\‘\ \\7\"\,\7
! | 1 1 1 | D e 1 L \;\"‘1 — SR I

1
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Gradient descent vs Inertial version

09F

X adient descent (g/
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®
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o1l \ S
\\\‘\ \\7\"\,\7
! | 1 1 1 | D e 1 L \;\"‘1 — SR I
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-0.2 0 0.2 0.4 0.6 0.8 1 5 10 15 20 25 30 35 40 45
; Iteration k

Gradient descent Inertial gradient descent
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fAccelerated gradient algorithm: smooth convexj

min f(z), f € ;" (R?) and convex
Te

Theorem Suppose that f € €, (R%), bounded from below and convex, that Argmin (f) # 0, v €]0,1/L] and

« > 3. Then the sequence (xy), cn generated by the Nesterov gradient algorithm obeys for k > o — 1

(f(zo) — min f) + 1dist(zo, Argmin (f))?
(k—1)?

and Y kI||Vf(z)l]* < +o0.
keN

f(x) —min f <

L |
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fAccelerated gradient algorithm: smooth (:onvexj

min f(z), f¢€ %, (RY) and convex
x€R4
Theorem Suppose that f € €, (R%), bounded from below and convex, that Argmin (f) # 0, v €]0,1/L] and

« > 3. Then the sequence (xy), cn generated by the Nesterov gradient algorithm obeys for k > o — 1

(f(zo) — min f) + 5dist(zo, Argmin (f))

f(xg) —min f < 1)

and Y kI||Vf(z)l]* < +o0.
keN

In view of Theorem S74, the Nesterov accelerated gradient algorithm achieves the optimal rate O(1/k?) on f.
This means that needs k& > Ce~1/2 for some constant C' > 0 to achieve precision & on function values f = at
least O(¢~1/2) gradient evaluations.

® For o > 3, one can show that the rate on f is actually o(1/k?) and that the sequence (z), . converges to a
minimizer of f. We omit the details here.

o

L |
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fAccelerated gradient algorithm: smooth (:onvexj

Proof: Our proof is based on a Lyapunov analysis. Define oy g 2 and txq1 def

ty =1+ tpr1a. Given z* € Argmin (f), we define the sequence

_E__ltis easy to see that

def

def
Vi =

ti(f(xk) o f(ZC*)) + %Hvk\ﬁ and v, = (xk:—l — JZ*) + 1 (ka — Ik—l) .

Vi is a non-negative sequence. We will show again that it is decreasing.
Since v < % and f € %ﬁ’l(Rd), we have for all z,y € R?

(Descentlemma S41) f(y — 4V f(y)) < f(y) — % 2—Ly) [V < f(y) - % IVF)l®
(Theorem in S49) < f(z) + (Vf(y),y — z) — % V()= VI - % IV )l

< J(@)+ (V)y —2) = 3 V@) = VI = S IVFWIP. (1

Let us apply (1) successively at y = yx and x = xy, then at y = yi, © = z*. According to xx1+1 = yr — YV f (yx)
and V f(z*) = 0, we get

Fanen) < Flaw) + (VH), e = ox) = 3 [V F @)l = 3 11V F(@x) = V5 (o)1 @

floee) < F@) + (VHu),un = 2) = SIVS @I = 3 19w @
Multiplying (2) by 41 — 1, and noting that the latter is non-negative for k£ > o — 1, then adding (3), we derive that
o1 (f(@r41) = f(27)) < (G — D) (f (i) — f(@7) + (VF(k), Crgr — D(ye — 2) + yp — 27)

— St IV @I = 3 (tess = DIV Fe) = V@I = S IV F i)l

< (tr = D(F(r) = F@) + (T, (tarr = Do — 2 + 30— ) = 2t [ V@I = 2 IVF @)
(4)
Let us multiply (4) by ;11 to make appear V1. We obtain
21 (f(zir) — F(27)) < (g — tarn) (f(an) — f(27)
b (VF (), (Ber = Dy — @) + 9 — 2%) — 2630 IVF@l? = 2t IV F )P )

2 2
Since o > 3, one can check that £, ; — t,41 < t7, and (5) becomes
| tean ( (@rgn = (@) < G(f () = [ (@) N
+ tr1 (VF (), (b — Dy — k) +y — o) — %tiﬂ IV f ()l — %tkﬂ IVFwl”- ©®  CIMPA25- 75



fAccelerated gradient algorithm: smooth convexj

Proof: According to the definition of V, (6) reads

Vierr = Vi <ot (VI (k) (b1 — 1)y — x) +yp — ) — %tiﬂ IV £ (i)
1

Y 2 1 2 2
— —t \Y% — — .
o et [V (yi)ll™ + 27\!Uk+1\\ 27\|Uk:||
Let us compute this last expression with the help of the elementary identity

1 1 1
§Hvk+1|\2 - §Hvk\|2 = (Vk41 — Uk, Vky1) — §H’Uk+1 - ’Uk:H2-

By definition of vy, and ¢, — 1 = tx411, We have
Vg1 — Uk = Tk — Th—1 + tpy1 (Tpr1 — Tk) — te(Tp — Tp—1)

= tpr1(Thp1 — ox) — (b — 1) (2k — 2p—1)

= tit1 (Tpr1 — (xp + gz — 2i—1)) = thg1 (Thr1 — Yk) = —Vet1 VI (Yk)-
Hence
1 2 1 2 Y .2 2 *
ZH%H” - ZH%H = —§tk+1||vf(yk:)|| —ter1 (Vf(yr), o — 2% + tip1 (X1 — Tr)) -

Collecting the above results, we obtain

Virr — Vie <t (VF(un), (trr — Dk — %) + yk — 2°) — vt241 IV £ (uw) ||
— b1 (VF(yr)s o — 2%+ tier (@1 — o)) — 2t [V ()]

2
Equivalently Vierr = Vi < bt (VF (), Ak) = v [V (i) I” = %tkﬂ IV£ Il
where
Ap = (trrs — D)y — Tk) + Yk — T — thpr (Thrs — zx)
= k1Y — Lep1 @k — b1 Th41 T Le1 Tk = Lep1 (U — Trt1) = Vi1 VS (yn)-
Consequently

Visr — Vi S Y820 IV F @) 12 = v IV F )l = Ltaga IV £ () |12

2
= — St [V o).

Thus, (V),cy is a decreasing sequence for k > kg = o — 1, from which we get

: Vi Vg Vigla—1)
f(xg) —min f < — < 2 = =2
258 = o1

L Moreover, summing these inequalities, and since t, ~ k, we get >, & IV F(yr)||” < +oo. Since from (4), we J
have 3, cn tr IV £ (ys) — VF(z1)]|? < 400, the summability also holds at 25, thanks to Jensen’s inequality. | CIMPA’25- 76




Accelerated gradient algorithm: strongly smooth convex

min f(z), f € ;" (R?) and convex
Te

Theorem Suppose that | & %j’l(Rd) and p-strongly convex. Consider the algorithm
VL= i (T — p—1)
VL + /i

1
Thil = Yk — ZVf(yk)-

Y = Tk +

Then
Cllek = |* < flap) —min f = O ((1 = Vi/D)¥).

|
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Accelerated gradient algorithm: strongly smooth convex

min f(z), f € ;" (R?) and convex
Te

Theorem Suppose that | & %j’l(Rd) and p-strongly convex. Consider the algorithm

VI- i
VL+ /1

Y = Tk + (v — Tk—1)

1
Thil = Yk — ZVf(yk)-

Then
Cllek = |* < flap) —min f = O ((1 = Vi/D)¥).

® This is much better than the rate O ((1 — u/L)*) of gradient descent for badly-conditioned problems.
see S65

L |
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Accelerated gradient algorithm: strongly smooth convex

min f(z), f € ;" (R?) and convex
Te

Theorem Suppose that | & %j’l(Rd) and p-strongly convex. Consider the algorithm

VI- i
VL+ /1

Y = Tk + (v — Tk—1)

1
Thil = Yk — ZVf(yk)-

Then
Cllek = |* < flap) —min f = O ((1 = Vi/D)¥).

® This is much better than the rate O ((1 — u/L)*) of gradient descent for badly-conditioned problems.
see S65

Proof: See . H

L |

CIMPA’25- 77



—

min f(z), f €% " (RY).

Summary of convergence rates

-

rERA
Criterion Gradient descent | Accelerated gradient descent
Non-convex minge gy |V £ ()] O(1/k)
Non-convex Nk(1/2) | f and dist(-, Argmin (f)) | O(exp(—u/L k))
Convex f O(1/k) (o(1/k)) O(1/k%) (o(1/k?))

Strongly convex

fand ||lzp — o~

2

O(exp(—p/L k))

O(exp(—+/1/Lk))

|
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o000 b0

Outline

Stochastic approximation a la Robbins-Monro.

|
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: Stochastic approximation

® Problem of finding zeros of h : R? — RY ;

$ h expensive to compute at all points.

$ Use random observations of values of h at certain points.

® Main example here : finding critical points of f : R¢ — R with h = V.
® Robbins and Monro algorithm '

Lk+1 — Lk — %(h(xk) T 5k)»

ex, is the random error h(xy).
® The Robbins-Monro algorithm cannot converge all the time (one has to control
bias and variance of ;).
® Goals:
$ General sufficient conditions for convergence.
® Modes of convergence : in mean, almost surely, on h(xy), on xy.
$ Rates of convergences and choice of step-sizes.

L |
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N N

Stochastic approximation in ML

® Population risk minimization :
® Minimize f(z) = E¢ [¢(x, )]
® Use the gradients at i.i.d. observations.
® Empirical risk minimization :
Finite set of i.i.d. observations : &1, -+ , &,.

Minimize f(z) = L S 0(x, &),

Use the gradients at i.i.d. observations on batches B C [n].

eeo0b0

Special case of the above when the measure is discrete supported on
E1,- , Ep.
® The finite sum special structure opens the door to variance reduction.
® Online learning :
$» Compute update at iteration k£ after each new observation &, has arrived.
® Cumulative loss : 5 S Ui, &).

L |
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Lyapunov function

Lk+1 = Lk — %(h(flfk) 5l<;)

® The Robbins-Monro algorithm cannot converge all the time.

® To analyze convergence, define a Lyapunov function V : R — R :

(i) V' is non-negative.
(i) Ve € (RY).

(iii) Pseudogradient condition : dx > 0 such that
(VV(z),h(z)) >k |VV(z)|?, VzeR%
(iv) Growth condition : 97 > 0 such that

[h@)I <7 (1+[VV(@)*), veer?

|
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Lyapunov function

Lk+1 = Lk — %(h(fﬂk) 5l<;)

® The Robbins-Monro algorithm cannot converge all the time.
® To analyze convergence, define a Lyapunov function V : R — R :

(i) V' is non-negative.
(i) Ve € (RY).

(iii) Pseudogradient condition : dx > 0 such that
(VV(z),h(z)) >k |VV(z)|?, VzeR%
(iv) Growth condition : 97 > 0 such that

[h@)I <7 (1+[VV(@)*), veer?

Example Ifh = Vf for f € Cﬁg’l(Rd), then V = f — inf f is a natural Lyapunov

. function. It is not the only one though. ]
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Martingale noise

Lk+1 = Lk — %(h(flfk) 5l<;)

® The i.i.d. assumption ¢ is not needed.
® Standard assumptions :

() The distribution of £, depends only on F, information up to iteration £, and
F = (Fr) ey is a filtration (recall notations and definitions in S53).
® InML: Fro=0(x0,..., Tk, U1, V1., Uk, Vk).

(i) Unbiasedness : E || Fx] = 0 a.s.
(iiiy Variance : [HskH2 \]-"k] — 52,

® Observe that this entails that = is F,-measurable.

|
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Convergence

Lk+1 = Lk — %(h(flfk) €k)

Theorem Suppose that

: 2K
0 <infvy, <supy < —
k L TL

and

Z% = +00, Zv,% < +o0 and Z(%ak)Q < +oQ.
keN keN keN

Then V (xy,) converges a.s. to a non-negative valued random variable, and lim inf;,_, . [|[VV ()| = 0 a.s.

L |
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Convergence

Lk+1 = Lk — %(h(flfk) 5l<;)

Theorem Suppose that

: 2K
0 <infvy, <supy < —
k L TL

and

Z% = 400, Zv,% < 400 and Z(%U;{;)Q < 400.
keN keN keN

Then V (xy,) converges a.s. to a non-negative valued random variable, and lim inf;,_, . [|[VV ()| = 0 a.s.

® For fixed noise variance o, = o > 0, our assumption on v; needs it to behave as v, = C/k1/2+5, for
§ €]0,1/2].
® Our assumptions allow for o}, to grow but not too fast : critical limit for o, = C'k*, s < 9.

L |
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- Convergence

Proof: Since V € CﬁLl’l(Rd), we have by the descent lemma

V(tksr) < V() +(VV(2k), Tp1 — k) + g lnsr — il
= V() — m(VV(x), h(xk) +ex) + % 1A (z) + exl”
= V(i) — w{VV (). hlai) + o) + L (|G| + 2(h(en). o6) + leell?)

Taking the conditional expectation, we get
E[V(zks1) | Fi] < V(wr) = w(VV (), (k) + Eex | Fi])
2
v L
+ 2 (@)l + 2(h(we), E [ex | Fal) +E [l | 7))

2L
(Unbiasedness S87: zero-mean noise) = V' (x1) — v (VV (), h(xk)) + % (Hh(wk)HZ + U;%)

27, 27
(Growth condition 586) < V(1) — Y&k |V V (z)|* + 7k2 TV V()]? + %T (7 + 02)
2 ’Y;%L 2
= Viak) =y (8 = W7L/2) [[VV (@) + =~ (7 +0%) - (1)

Let B = sup, k — Y7L/2. We have 8 > 0 by assumption on 7. We are now in position to apply the Robbins-
Siegmund lemma in S55 to get the claim.

L |

CIMPA’25- 85



Convergence rate

Lk+1 = Lk — %(h(flfk) €k)

Theorem Suppose that o et sup,, o < 4+00. Choose v; = i =0,...,k, wherec < =¢. Then

\/k—l—l’

L(’T—I—O‘2)
2

5  E[V(xg)] —infV + ¢?
min [[B [VV(@:)][I” < NCES

Ifvi. = c/v/k+ 1, thenforallk € N

> log(k + 1)
i [E[VV ()] —0( o )

L |
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N N
Convergence rate
Try1 = T — Ye(h(zr) + k)
Theorem Suppose that o et sup,, o < 4+00. Choose v; = \/ﬁ i =0,...,k, wherec < =¢. Then
E[V ()] — inf V + 2 L(T‘f)
E III° <
min [E[VV (z:)]| N
Ifvi. = c/v/k+ 1, thenforallk € N
log(k + 1)>
E DI = .
min [ (9V (@) = 0 (<5
® |In the first claim, the number of iterations k& is fixed a priori.
® The second claim is valid for an arbitrary number of iterations k.
L _|
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Convergence rate

Proof: Taking the expectation in (1) in S89, we have

(Jensen’s inequality) (Z %> mbﬁ IE[VV (z)]]|* <8 (Z %> mmE [||VV($1)H }

<6Z% 19V (@)l

(Telescopic sum) < E[V(xg)] — E[V (zry1)] + ( 5 20%;2

2 k
< E[V(xg)] —infV + L (T;_U ) Z’yf
Thus ey M)
min ||E [VV (x;)] H < E[V{zo)] ~nfV + 2 2i=0 i : (2)
i€lh] BY o

The upper-bound is a convex function of (v;);cx), and the optimal choice is v; = ¢/vk + 1, for some constant
c > 0, whence we get the first claim.

Let h(t) = ¢/+/t + 1. Since h is decreasing, we have fori = 2,3, ...
i+1 i
(Integral test of series)/ h(t)dt < ~; S/ h(t)dt.
i i—1

Inturn, for k > 2 and s € {1, 2}

k—l—l k
2 1

Thus,

k k+1 k k
> > / h(t)dt =2c(vVk+2—V3)and Y 77 <3¢%/2+ / h(t)?dt < 3c?/2 + c¢?log(k + 1).
i=0 2 i=0 1

Inserting this into (2), we get the result. | J
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ﬁConvergence under gradient domination -

Lk+1 = Lk — %(h(flfk) €k)

Theorem [n addition to the assumptions on V' in S86, suppose it also obeys the curvature condition
IVV ()| > 2uV (x), Yz eR p>0.

Assume also that o < sup; o < +00. The following holds :

(i) If v, =~ €]0,k/(TL)], then

E[V < pFR[V 1—pF
V(zg)] < p"E[V(z0)] + o (1—p"),
where p = 1 — ku~y. Thus
L(t+ 07
limsupE [V (zg)] < WL +o )
k——+o00 KU
(i) Suppose thatinfy v, > 0, supy, v, < 25, > oy V6 = +00.

(@) IfY . cn7i < +oo thenV(zy) — 0 a.s..
(b) If~v, — 0 thenE [V (x1)] — 0.
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fConvergence under gradient domination -

Lk+1 = Lk — %(h(flfk) €k)

Theorem [n addition to the assumptions on V' in S86, suppose it also obeys the curvature condition
IVV ()| > 2uV (x), Yz eR p>0.

Assume also that o < sup; o < +00. The following holds :

(i) If v, =~ €]0,k/(TL)], then

E[V (k)] < p*E [V (20)] + Pt ),
where p = 1 — ku~y. Thus
L(t+o0?
limsupE [V (xx)] < WL+ o7)
k——+o00 KU

(i) Suppose thatinfy v, > 0, supy, v, < 25, > oy V6 = +00.
(@) IfY . cn7i < +oo thenV(zy) — 0 a.s..
(b) If~v, — 0 thenE [V (x1)] — 0.

® For V= f- min f, the curvature condition above is nothing but the ¥.(1/2) condition in S51.

® Claim (i) states that for fixed step-size one has convergence in mean to a noise-dominated region.

.LConvergence to O (a.s. or in mean) requires varying step-sizes. J
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fConvergence under gradient domination -

Proof: We embark from (1) in S89, and use the curvature inequality to see that
2

E[V(xks1) | Fel < V(xg) — 2uvk (K — y7L/2) V(xk) + % (T4 0%)

= (1 = 2uvyk (k — 7L/2))V(2)) + % (7'—|—0'2) .

(i) For fixed step-size, let the rate function ((~) dfy 2uy (k — yTL/2)). It is easy to verify that this is a quadratic

function whose minimum is attained at x/(7L), and it is decreasing on |0, x/(7L)]. On this interval, it has also the
upper-bound C(v) <1—kuy =p.
Thus, taking the full expectation in the above inequality, we write

2

E[V(zii1)] < pE [V (xx)] + % (7’ + 02) : (1)

Letry = E [V (x)] and B = (7‘ + 02), we have
re+1 < pri + 5.
Let v, = — B/(1 — p). We have
Vi1 = Th1 — B/ (1= p) < pri + 8= B/(1 — p) = pvi.
lterating this inequality, we obtain
v < pvo = e < pfro 4+ B/ (1= p) < pFro+ 8/(1 = p)(1 = p).
This gives the claim.
(ii) We now set r, = V (zy), ax = vipk and By, = 722 (74 o2), and thus get
Erg+1 | Fil < (1 — aw)ri + B

We now in position to invoke the lemma in S57 to get (a) and (b) since the respective assumptions are verified under

L our assumptions on ;. N J
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Convergence rate under gradient domination

Lk+1 = Lk — %(h(flfk) €k)

Theorem Suppose that V' verifies the assumptions of S86 and the curvature condition on S92. Assume also that

o supy, o < +00. Choose v, = c¢/k where ¢ > 0. Then

E[V(x)] = O(k™1) if kpe > 1,
_ : ]

E[V(xx)] =0 < ng(k)> if kpe =1,

E[V(xr)] = O(k~"F°) if kpe < 1.

We get sublinear convergence rates.

The convergence speed depends on the “conditioning” of V.

It becomes O(k~1) if one chooses ¢ > 1/(uk), which necessitates the knowledge of 1. and x.

Observe from the second Chung lemma in S61 that the rate can scale as O(k~'/27?) with the choice v, =
c/kY/2+9 5 €]0,1/2[. This is strictly worse that the O(k~!) rate but no knowledge of ;. or dependence on the
“conditioning” is required.

L N

L |
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Convergence rate under gradient domination

Proof: For k large enough, we have v, < k/(7L). We thus obtain from the proof (1) in S93 that

E[V(zr)] < (1— rmun)E V()] + 22 (7 4 0%).

It is then sufficient to invoke the first Chung lemma in S61 to conclude. H

L |
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N N

Summary of convergence rates

Lk4+1 = Lk — ’Yk(h(ili'k) T 5k)

Robbins-Monro algorithm

V general O(1/Vk)
Gradient domination (known conditioning) O(1/k)

Gradient domination (unknown conditioning) | O(1/k11=%)), s > 0 arbitrarily small

L |
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o000 b0

Outline

Stochastic gradient descent: vanishing step-size.

|
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Stochastic Gradient Descent
min f(x), f€ ‘Kg’l(Rd).

rER

Input : step-size sequence (V) - To, Stopping rule, probability distributions (P ), . ON R
Initialization : £ = 0;

while Stopping rule not satisfied do

Sample a stochastic estimate G, ~ P of V f(xx);

Trr1 = Tx — VGr

k< k+1.
return z;..

|
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Stochastic Gradient Descent
min f(x), f€ ‘Kg’l(Rd).

rER

Input : step-size sequence (V) - To, Stopping rule, probability distributions (P ), . ON RY:
Initialization : £ = 0;

while Stopping rule not satisfied do

Sample a stochastic estimate G, ~ P of V f(xx);

Trr1 = Tx — VGr

k< k+1.
return z;..

® Population risk minimization :
® Minimize f(x) = E¢ [{(x,€)], € ~ P.
$ Sample n iid samples (&;);ep,,) from P,
® Take G =+ >7" | Vl(wg, &)
® Empirical risk minimization (special case of the above) :
$ Minimize f(x) = = >, 4i(x).

n

® Sample a batch By, C [n|.
® Take Gy = 57 2 icp, Vii(wn). N
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Stochastic Gradient Descent
min f(x), f€ ng’l(Rd).

rER

Input : step-size sequence (V) - To, Stopping rule, probability distributions (P ), . ON RY:
Initialization : £ = 0;

while Stopping rule not satisfied do

Sample a stochastic estimate G, ~ P of V f(xx);

Trr1 = Tx — VGr

k< k+1.
return z;..

Standard assumptions

® The distribution of GG, depends only on F., information up to iteration &, and
F = (Fk) ey I8 @ filtration (recall notations and definitions in S53).
® Unbiasedness : E |Gy — V f(xr)|Fr] =0 a.s.

® Variance : [£ [HGk — V()| ‘}—k} < o2+ 6|V (x|, d>0as.
At;(;Jte Relati?/re error

error

|

CIMPA’25- 95



Stochastic Gradient Descent
min f(x), f€ ng’l(Rd).

rER

Input : step-size sequence (V) - To, Stopping rule, probability distributions (P ), . ON RY:
Initialization : £ = 0;

while Stopping rule not satisfied do

Sample a stochastic estimate G, ~ P of V f(xx);

Tr+1 = Tk — VkGr ;

k< k+1.
return z;..

Standard assumptions

® The distribution of GG, depends only on F., information up to iteration &, and
F = (Fk) ey I8 @ filtration (recall notations and definitions in S53).

® Unbiasedness : E |Gy — V f(xr)|Fr] =0 a.s.
® Variance : E [Hak — V()] \fk] < o2+ 5|Vl 6> 0as.
At;gl;te Relati?/re error

error

® SGD is a special case of Robbins-Monro stochastic approximation algorithm :
h(a:k) = Vf(:L‘k) and El = Gk — Vf(.il?k) See S84 J
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SGD: smooth non-convex

min f(z), f€ % (RY)

rERA

Theorem Suppose that f € ‘Ki’l(Rd) and bounded from below. Assume that

0 <inf~vy, <su < +o00, and 2 < 400.
= e = kp% 1+5 Z’Yk %%@

Then
(i) f(xr) — min f converges a.s. to a non-negative valued random variable.

(i) Gminfy_eo |V f(z)|| = 0 a.s.

(iii) Choose v; = ——,1=0,...,k, wherec < Then

Jhr1’ ! <1+6)L

E[f(z0)] — min f + CQLT*.

. 2
min |E [V f(x)]]|” <

cBVk+1
Ifvi = c/\k+ 1, then for all k € N
. log(k + 1))
E[Vf(z)]* =0 .
min [ (o9 = 0 (“EES

(iv) If (x1),cn IS bounded a.s. then dist(xy,, Crit(f)) — 0 a.s.

|
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SGD: smooth non-convex

min f(z), f€ % (RY)

rERA

Theorem Suppose that f € Cﬁé’l(Rd) and bounded from below. Assume that

0 <inf~v, <su < +o00, and 2 < 400.
= e = kp% 1+5 Z% %%@

Then
(i) f(xr) — min f converges a.s. to a non-negative valued random variable.

(i) Gminfy_eo |V f(z)|| = 0 a.s.

(iii) Choose v; = ——,1=0,...,k, wherec < Then

Jhr1’ ! <1+6)L

E[f(z0)] — min f + CQLT*.

. 2
min |E [V f(x)]]|” <

cBVk+1
Ifv, = c/\k+1, thenforallk € N
. log(k + 1))
E[Vf(z:)]]|* =0 .
min [ (o9 = 0 (“EES

(iv) If (x1),cn IS bounded a.s. then dist(xy,, Crit(f)) — 0 a.s.

® In general : one needs k > C's—* to achieve precision ¢ in the average gradient norm.

L ® But the cost per iteration can be much smaller; i.e. much less gradient evaluations per iteration. J
CIMPA25- 96



SGD: smooth non-convex

Proof: The key observation is that V' = f — min f is a Lyapunov functionfor SGD seen as a Robbins-Monro
approximation algorithm, and verifies the conditions in S86 with x = 1 and 7 = 1. We then argue as in the proof in
S89 to see that

E[f(ze1) | Frl < flor) — (V[ (zk), E[Gr | Fk])

L (19 @0l + 20V f ). E [Go — VS (@) | Fl) +E[IG = V@l | F])
< Flaw) = IV F @02+ 2 (195 @)l + 0% + 5|1V ()|

— Fe) — v (L= (L + 8)L/2) [V F()]? + TEn2.

2
Let 8 =sup, 1 — v (14 9)L/2.
We have 8 > 0 by assumption on ~;. We are now in position to apply the Robbins-Siegmund lemma in S55 and
Lemma S59 to get claims (i)-(ii).
Claim (iii) follows from Theorem S90.
For claim (iv), we start first by showing that limy_. . ||V f(xx)|| = 0 a.s. For this, we use Lemma S59. Since
(k) ey is almost surely bounded, there exists r > 0 such that (zx),.y C B-(0) a.s.. Convexity of (.)* and
Lipschitz continuity of V f entail

V£ @) = IV f (@) P < 2V f @)l IV F@o)ll = [V f (@re)])

<2 ( sup Vf(flf)) IVF(zr) = Vf(zr)l

x€B,(0)

< 2L ( sup Vf(:E)I) |Tr+1 — 2k

x€B,-(0)

%2L< sup Vf(ﬂ?)) Gkl .

#€B-(0) CIMPA25- 97



SGD: smooth non-convex

Proof:

Denote k = (SUP:BEIB%T(O) IV f(z) H) < +o00. Taking the conditional expectation on both sides we obtain
IV F@)l* B[V f (@) |I* | F| < w2LE[IGxll | Fil

Triangle inequality < 2Lk (El||Gr — V(x| | Fe] + |V f(xr)|)
1/2
Jensen'’s inequality < vi2LK (E {HGk _ vf(ﬂfk)HQ | Fk} 4 K/)
Assumption on the noise variance S99 < vp2LK ((02 4 51%)1/2 4+ FL) .

We now use Lemma S59 with wy, = |V f(zx)||%, ar = ~&. Indeed, we already know that (W) ey € L (F), auis
not summable, and the last inequality above verifies the assumption of the lemma with v = 2Lk ((02 + 5/@)1/2 + m).
We thus deduce that V f(xx) — 0 a.s..

Now, since (a:k)keN iIs bounded a.s., then a.s. it has convergent subsequences. Let (xkj)jeN be any convergent
subsequence, and x its accumulation point. Then by continuity of V f, we have a.s.

V()= lim Vf(zg,)= lim Vf(zy) =0,
J—00 k— o0
meaning that  is an Crit( f)-valued random variable. From continuity of dist(-, Crit(f)), we obtain

lim dist(zg,, Crit(f)) = 0.

J—+o0
The limit being unique (here 0) for any a.s. convergent subsequence (:z:kj)jeN means that the whole sequence
(dist(zx, Crit(f))),en @-8. converges to 0. |

|
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SGD: smooth with L.(1/2)

min f(z), f€ €N (RY) NE(1/2)
xERY

Theorem Suppose that f € %If’l(]Rd) N £(1/2). The following holds :
(i) Ify, =~ €]0,1/((1 + 8)L)], then

. k . ’YLO'Q k
Ef (ex) — min f] < "B [f (wo) — min f] 4+ 7=(1 = o),
where p = 1 — 2uy. Thus
vLo?

limsup E [f(zr) — min f] < :
k—+o00 4:“

(i) Suppose that Argmin (f) # 0, infg v > 0, sup, 7 < ﬁ > ken Ve = F00.

(@) IfY . cn Vi < +oo then f(xy) — min f and dist(xy, Argmin (f)) — 0 a.s..

(b) Ifv — 0 thenE [f(xr) — min f] — 0 and E [dist(:z:k,Argmin (f))] — 0.

(i) Choose v, = c¢/k where 2uc > 1. then

E[f(zy) —min f] = O(k™') and E [dist(a:k,Argmin (f))2] = O(k™1).

|
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B SGD: smooth with £.(1/2) E

min f(z), f€ €N (RY) NE(1/2)
xERY

Theorem Suppose that f € %If’l(]Rd) N £(1/2). The following holds :
(i) Ify, =~ €]0,1/((1 + 8)L)], then

E[f(z)) — min f] < p"E [f(zo) — min f] + (1—p"),

Ap

where p = 1 — 2uy. Thus

L 2
limsup E [f(zr) — min f] < =7
k— 00 4

(i) Suppose that Argmin (f) # (), infy v, > 0, sup, 7x < (1++)L > pen Tk = +oc.

(@) IfY . cn Vi < +oo then f(xy) — min f and dist(xy, Argmin (f)) — 0 a.s..

(b) Ifv — 0 thenE [f(xr) — min f] — 0 and E [dist(:ck,Argmin (f))] — 0.

(i) Choose v, = c¢/k where 2uc > 1. then
E[f(xy) —min f] = O(k™') and E [dist(a:k,Argmin (f))2] = O(k™1).

® One needs k > Ce~! to achieve precision £ on f and dist (-, Argmin (f))? in expectation.

® This is to be contrasted with the C'log(e~1) complexity in the deterministic case.

L ® The cost of gradient evaluation per iteration can however much smaller. J
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B SGD: smooth with £.(1/2) E

Proof: Again, key observation is that V = f — min f is a Lyapunov function for SGD seen as a Robbins-Monro
approximation algorithm, and verifies the conditions in S86. f € £(1/2) also implies that the gradient domination
condition in S92 is also verified. We then argue as in the proof in S93 andS101to see that

E[f(zry1) —min f | Fi] < f(zg) —min f — 4pye (1 — (1 +0)L/2) (f(zx) — min f) + %7/3
= (I —4py (1 =1 +0)L/2))(f(x) — min f) + 027L’Y/3-

(i) For fixed step-size, let the rate function ((~) L duy (1 —~(1+9)L/2)). It is easy to verify that this is a
quadratic function whose minimum is attained at 1/((1 + 6)L), and it is decreasing on ]0,1/((1 + 6)L)]. On this
interval, it has also the upper-bound C(y) < 1—2uy.

Thus, taking the full expectation in the above inequality, we write
o2 L~?

E[f(zk+1) — min f] < pE[f(zx) — min f] + ——.

With the exactly the same arguments as in S93, taking p = 1 — 2u~y and 8 = 02 L~? /2 we get the first claim.
(i) We now set ry, = f(zg) — min f, ap = 2u7yg and B, = v202L /2, and thus get
E k41 | Frl < (1 — aw)ri + Br. (1)

We now in position to invoke the lemma in S57 to get (a) and (b) since the respective assumptions are verified under
our assumptions on 7. The claims on dist(xx, Argmin (f)) follow from those on f since f € £(1/2) and thus has

the quadratic growth in S51.
(iii) Take the full expectation in (1) and invoke Chung lemma in S61. N

L |
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SGD: smooth strongly convex

m%é}l f(x), fe€%, " (R?) and strongly convex
Tre

Theorem Suppose that f € ‘KLl’l(]Rd) and p-strongly convex. Then it has a unique minimizer x* and the following
holds :

(i) Ify, =~ €]0,1/((1 4 6)L)], then

. L : 7L02 k
B [f(ex) — min f] < PE [/ (zo) — min f] + 277 (1 - 6¥)
where p = 1 — 2ury. Thus
L 2
limsupE [f(xr) — min f] < =0
k—+o0 4,LL

(i) Suppose thatinfy, v, > 0, sup, v < ﬁ > wen Tk = +o0.
(@) If>,n7i < +oo then f(xy) — min f and ||z — z*|| — 0 a.s..
(b) If~v, — 0 thenE[f(xx) — min f] — 0 andE [||x — x*||]] — 0.
(i) Choose vy = c¢/k where 2uc > 1. then

E[f(ax) ~min f] = (k™) and E[Jax —2*?] = O(").

Proof: This is just a specialization of Theorem S103 since a strongly convex function is in £(1/2) and has a unique
minimizer. H

L |
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SGD: smooth convex

min flx), fe%€ " (RY) and convex
reR

Theorem Suppose that f € CKLl’l(IRid) bounded from below and convex, and that Argmin (f) # (). Assume that
R4

1+5 Z%—+oo and Zvi<+oo.
keN

0< ifklf% <supvg < =+
k
Then

(i) f(xr) — min f a.s. at the ergodic rate

E [dist(a:(), Argmin (f))2] + o2 Zf:o %‘2
El{f(zxr) —min f| < R 7
[f(ilfk) f] — 9 Zf:o Vi

_ k k
where Ty = ) ;o Viti/ D=0 -
(i) Iy =c/Vk+1forc< W then

E[f(Z) — min f] = O (log(,fjf)) -

(iii) xj, converges a.s. to a random variable valued in Argmin (f).
Rd

|
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SGD: smooth convex

min f(z), f € ;" (R?) and convex
Te

Theorem Suppose that f € CKLl’l(Rd) bounded from below and convex, and that Argmin (f) # (). Assume that
R4

1+5 Z’Yk—+00 and Zvi<+oo.
keN

0< i%f% <supvg < =+
k
Then

(i) f(xr) — min f a.s. at the ergodic rate

E [dist(a:o, Argmin (f))2] + o2 Zf:o %‘2
El{f(zxr) —min f| < R 7
[f(ilfk) f] — 9 Zf:o Vi

_ k k
where Ty = ) ;o Viti/ D=0 -
(i) Iy =c/Vk+1forc< W then

B ()~ minf] = 0 ()

kE+1

(iii) xj, converges a.s. to a random variable valued in Argmin (f).
Rd
One needs k > C's~?2 to achieve ergodic precision € on f in expectation.

This is to be contrasted with the Ce~! complexity in the deterministic case.

The cost of gradient evaluation per iteration can however much smaller.

Convergence of f (in ergodic sense) to a noise dominated region if the step-size is bounded away from J
Zero. CIMPA’25- 102
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SGD: smooth convex

Proof: (i) Denote for short S = Argmin (f). Let z* € S be the closest vector to z;. We have
Rd
dist(wr11,8)* < llwgr — 2*||* = [log — 2*||° = 29(Gr, 2 — %) + 7 | G|
= dist(zx,S)* — 27k (Gr — Vf(2p), 2 — %) — 29 (V f(21), ) — 2*)

9t (IVF @0l + 29 F(wr), G — Vf () + |Gr — T f()]|?)
< dist(zy, S)? — 27k(Gr — V f(wk), o — ) — 29k (f(ark;) min f + 57 HVf( )HQ) CO}?&%VHY

+ 77 (HVf(ﬂﬁk)Hz +2(Vf(xk), Gy — Vf(zk)) + |Gk — Vf(fL‘k)Hz) .

Taking the conditional expectation and using the assumptions on G, in 899 we get

E [dist(ﬂkarl,S)Q | Fk] < diSt(CUk,S)z — 2 (f(:c ) — min f + o1 va(mk)H >

+92 (IVF@e)I° + 0% + 6 [V f(n)])
= dist (a4, S)? = 2ye(F(wx) = min f) = (1 = (1 4+ )eL) [V (@) [|* +~fo?

< dist(zg, S)? — 29 (f(x) — min f) + vio>. (1)

In view of the assumptions on (%) x> @aPPlying the Robbins-Siegmund lemma in S55, we have lim inf,_ o f(x1) =
min f a.s.. But we already know from TheoremS100that f(z;) — min f converges a.s. Altogether, this means that
the lim inf is actually a limit. For the (ergodic) rate, we take the full expectation in (1) and use convexity of f to get

; in f
Zz 0%27 - |

1
Telescopic property in (1) < — (E [dist(a:o, 8)2] —E [dist(a:k+1,8)2] + 0 Zﬁ)
zz':o Vi —
- E [dist(a:o, 3)2] + o2 Zf:o V2

Zf o Vi . J

(ii) We argue exactly as in S91 to bound ¥, 42 from above by C'log(k+1) and 3"+ ~; from below by €’ /& + ICIMPA’25- 103

Jensen’s inequality 2E [f(Z) — min f] <




SGD: smooth convex

Proof: (iii) This is the most technical part of the proof. Let z* € S. We argue as in (i) (see (1)) to see that

Ellzr —a*° | Fe| < llow = *|* = 29(f () = min £) = 21 = (14 )yl [V F () |* + 7202

<z — ¥ + R0 2)
Applying again the Robbins-Siegmund lemma in S55, we have there exists a set of events (2.« (that depends on x*)
such that P(€2,«) = 1 and for all w € Q.+,

(lzx(w) — 2*[|) xen converges.

We now show that there exists a set of events independent of =*, whose probability is 1 and such that the above still
holds on this set. Since R is separable, there exists a countable set Z C S, suchthatcl(Z) = S. Let Q= N,ez 2

Since Z is countable, a union bound shows

P(Q)=1—P (UQ) >1- ) P(Q) =

z€Z 2€Z
For arbitrary * € S, there exists a sequence (z;)jen € Z such that z; — x*. Thus for every j € N there exists

7; : £, — R4 such that k:hrf |z (w) — 2] = 75 (w), Ywe Q.. (3)
_)

Now, let w € ©. Since 2 C €, ; forany j € N, and using the triangle inequality and (3), we obtain that

Ti(w) — |z — flf*H < liminf [|zg(w) — 2*|| < limsup [|zg(w) — 2™ < 75(w) + |25 — 27|
k—+o0 k——4o00

Passing to 3 — +o0, we deduce

limsup 7j(w) < liminf ||z, (w) — ™| < limsup ||k (w) — 2*|| < liminf 75 (w),
Jj—4o0 k—-o00 k—+o00 J—+0o0

whence we deduce that lim;_, o, 7, (w) exists on the set Q of probability 1. In turn, almost surely, limy_, ||zx — x*||
exists and is equal to lim;_, ; o 7; forany z* € S.

In particular, this shows that that (a:k)keN is bounded a.s. Let (:ckj)jeN be any converging subsequence, and  its
accumulation point. Then using claim (i), we have a.s. that

f(z) = lim f(z,) = lim f(z)) = min f,
j—o0 k— o0
which means that z is a random variable valued in S. But we have shown that (||z, — Z||),.c i @.s. convergent, and
thus limy,_, o |2k — Z|| = im0 ||k, — Z|| = 0, i.e. (z1),y CONVerges a.s. to a random variable valued in S. J
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- SGD: smooth convex pointwise rate

min f(z), f € ;" (R?) and convex
Te

® Can the rate O(log(k)/v'k) be improved ?
® Can one obtain a pointwise rate rather than the ergodic one ?
® Can the step-size be fixed rather than vanishing ?

L |
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- SGD: smooth convex pointwise rate

min f(z), f € ;" (R?) and convex
Te

® Can the rate O(log(k)/v'k) be improved ?
® Can one obtain a pointwise rate rather than the ergodic one ?
® Can the step-size be fixed rather than vanishing ?

Theorem Suppose that f € %g’l(Rd), bounded from below and convex, and that Argmin (f) # (). Assume that
Rd

2
(1+0)L

0< ilgf% < sup vk <
k

and that the absolute error in the gradient (see S99) is iteration-dependent, say a,%. Then

E[Vol + X5 o(i +1)a? (v + L) /2
k41 '

E[f(zrs1) — min f] <

L |
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- SGD: smooth convex pointwise rate

min f(z), f € ;" (R?) and convex
Te

® Can the rate O(log(k)/v'k) be improved ?
® Can one obtain a pointwise rate rather than the ergodic one ?
® Can the step-size be fixed rather than vanishing ?

Theorem Suppose that f € %g’l(Rd), bounded from below and convex, and that Argmin (f) # (). Assume that
Rd

2
(1+0)L

0< i%f’Yk < sup vk <
k

and that the absolute error in the gradient (see S99) is iteration-dependent, say a,%. Then

E Vo] + Xiso(i + Do? (v + L9f) /2

E[f(gs1) — min f] < )

® Vanishing fast enough noise, constant step-size v, = v €]0,2/(1+0)L|:
® convergence at the rate O(1/k) if >, .y koj < +o0.

® Non-vanishing noise infy o > 0 : convergence to a noise dominated region if v, = O(1/k).

® For non-vanishing noise, we cannot have both convergence and non-vanishing step-size in general : ex-
cept for finite sums (see next chapter).

® |tis not clear what can be said about global convergence of iterates (), .y When the step-size is fixed.

L |
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- SGD: smooth convex pointwise rate

Proof: Take any x* € Argmin (f). The proof extends the deterministic Lyapunov analysis to the stochastic case.

Define the sequence :

(& . ]- *
Ve k(f(ar) —min f) + o o —a*|*.
Tk
This is a non-negative sequence. We have
. 1 * *
Virr = Vie = (k+ 1)(f(zr+1) — f(@x)) + f(@x) — min f + 5 (H%‘k — G — 2" = o — x \\2)

= (k+1)(f(wps1) — f(xr)) + f(xg) — min f + i (—2%<Gk7$k — ") + 7 ||Gk||2)

< (4 1) (V7@ — ) + 5 o = anl*) + fon) = minf + 5 (<2 (Gun = o)+ |G )
’Y%L 2 . 1 % 2 2
< (k1) (=995, G+ EE NGl ) + flon) = min f + 3 (<2 (G — %)+ Gl

Taking the conditional expectation on both sides and the assumptions on G, we get

E Vit | Fr] = Vi < (k+1) (-%(Vf(wk)»E[Gk | Fi]) + %%TLE [||Gk||2 | ka + f(@x) — min f

b (_Q’Yk(E Gi | Fi] s xp — ) + 7 E {”G’“H2 | ]:kD

2k
2 ’Y%L 2 .
= (k+1) (= [Vf@)l” + L= [HGk” \Fk} + f(2g) — min f
1 * 2 2
g (2T )i = )+ B [IGHl | A )
As previously shown. E G+ | Fi| = (14 0) |V £ @)|* + o

L |
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- SGD: smooth convex pointwise rate

Proof: Plugging this and denoting py. det V(1 — v L(1 4+ 6)/2), we get

E[vkﬂm]—vks(km( e [V £ ()| +”’;L<1+5> IV £ (n)] +’7k§ >+f(wk)—minf

2
— (VS (@), on—a*) + L+ ) IV F(an)]* + 5

0
(kA D |V F P — o [V ()P + 2D

Since v (1 + §) < 1/L, and taking the full expectation, we obtain
(k+DviLog | 0%

k+ 1)~2Lo? 2 Co. Uit
IV )P + EE %ﬂ% ocosriiy

E[Vis1] < E[Vi] = (k+ 1)p,E [HVf(xk)llﬂ o <E[Vi] + 2= !
E [Vo] —I—Z 7@+Lz—|—1)fyz).
From the definition of V}., we eventually get
B F(onss) — min f] < B0 S0 k? +(71 +L(i+1)92)
|
L |
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N N

Accelerated SGD: smooth convex

min f(z), f € ;" (R?) and convex
Te

Input : step-size sequence (Vi ),cn, @ = 3, To, stopping rule, proba-
bility distributions (Py) ..y 0N R?;

Initialization : £ = 0;

while Stopping rule not satisfied do

Y = Tk + (1 — )@ — Tr=1);

Sample an estimate Gy, ~ Py, of V f(yx);

Trt1 = Yr — VEGrs

k< k+1.
return .

L |
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Accelerated SGD: smooth convex

min f(z), f € ;" (R?) and convex
Te

Theorem Suppose that f € Cﬁg’l(Rd), bounded from below and convex, and that Argmin (f) # (). Let
Rd

E[Gy — Vi(zi)|Fi] =0 and E [Hak _ Vf(xk)nﬂ def 52

Run the accelerated SGD with non-increasing step-sizes ~y;, €|0,1/L]. Then

C+(a—1) (@ +4F (- 1)%07;)2
Ve(k —1)? |

E[f(zx) — min f] <

for some constant C > 0.

L |
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~ Accelerated SGD: smooth convex

min flx), fe%€ " (RY) and convex
reR

Theorem Suppose that f € %g’l(Rd), bounded from below and convex, and that Argmin (f) # (). Let
Rd

E[Gy — Vi(zi)|Fi] =0 and E [HGk _ Vf(xk)nﬂ def 52

Run the accelerated SGD with non-increasing step-sizes vy, €]0,1/L]. Then

C+(a=1) (V20 +4 X0, (i - 1)%‘”)2

E[f(2k) — min f] < o :

for some constant C > 0.

® Vanishing fast enough noise, constant step-size v, = v €]0,1/L] :
® convergence at the rate O(1/k?) if >, .\ kor < +00.

® Trade-off between decreasing rate of step-sizes, noise and convergence rate : if v, decreases, the noise
is allowed to be larger, but the convergence rate degrades.

® For non-vanishing noise, we cannot have both convergence and non-vanishing step-size in general : ex-
cept for finite sums (see next chapter).

L |
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Accelerated SGD: smooth convex

Proof: Our proof is based on a Lyapunov analysis that parallels the deterministic one in S79. Let o, dof g - and
def

tk+1 = ——7 and observe that t;, = 1 + £, 1. Given 2% € Argmin (f), we define the sequence
def 1 def
Vi = vty (f(zr) — f(2¥)) + §||Uk:|!2 and vy = (Tx—1 — @) +tk (T — T1) -

Since f € €, (R?%), we have for all z,yy € R?

F(y — wGr) < F(y) — (VI (1), Gr) + ”k 1G]l

< F@) (VI W)y — 1) — o7 IVF@) = VI iV (), i) + B G
2
L
< (@) + (V). y—2) = S IVF@) = VI = V(). Ge) + EZ NG (1)
where we used that v, < 1/L in the last line. Let us apply (1) successively at y = y, and © = xy, then at y = yy,
x = x*. According to 11 = yr — Gk and V f(z*) = 0, we get

flargr) < flar) + (VF(ye), yp — o) — % IV £ @) = V)l = (Y f(yr), Gr) + —L IGLlI” (2)

2
f(@rg1) <min f + (VFf(yr), ye —27) — = HVf(yk)H — (VI (), Gr) + —L |Gell” (3)

Taking the conditional expectation on both sides of (2) and (3), and using that v < 1/L, we get
E[f(ors1) | il < Flon) + (VF@r)o v — o) = 5 [V F@e) = VE@ I = V£ @l + 3B [I1Gel* | 7
(4)

: * Vk Yk
E [f(wrs1) | Fi) € min f + (Vo) —2*) = 5 IV @) P =3 IV @0 P+ SE[IGI* [ A]. ©)
Multiplying (4) by tx11 — 1, and noting that the latter is non-negative for £ > o — 1, then adding (5), we derive that

tk1 B [f(zg+1) — min f | Fi] < (fey1 — 1)(f(2x) — min f) + (Vf(yk) (tkrr — D)(yr — or) + yp — 7)

Atk 195w = 2t = D195 @) = V@I = 2 IV 17 + P02 E (16K | e gy faos.




Accelerated SGD: smooth convex

Proof: Let us multiply (6) by tx+1 to make appear Vi 1. We obtain
th i1 B [f(2re1) —min f | Fi] < (8341 — ter)(f(zx) — min f)

N t Vits
o (V£ (), (i =D =) +9e—2") =t 1 VS i)l =P 1V F ) P+ Gl | 7]
(7)

Since a > 3, one can check that ¢, — tx11 < t7, and (7) becomes
thi1 E[f(2r41) —min f | Fy] < t3(f(2zx) — min f)

X t Vity
1 (VL (), (=) e—aw) 4= =0 [V F () 1P =52 9 F )P+ =2 |Gl | 7
(8)

Multiplying both sides by v, % that is non-increasing and according to the definition of V%, (8) reads

2
N t
E[Visr | Fil = Vi < tresr(VFn), e — 1) (yk — k) +yk — %) —v2t2 1 |V (un)])* — Tkt IV £ ()|

2
1 > Lo, Jitka 2
+ SE [Jonaall? | Fi] = Sloel® + 2SHLE [IGel® | Fe| . @
Arguing as in the deterministic case, we have
Vk+1 — Uk = L1 (Tht1 — Yk) = —Vetk+1Gr,

and hence

1 1 1
K [5\\%“”2 | ]:k] — 5”’%\\2 = (Vg1 — Vk, Vk41) — §||Uk+1 — g ||?

242
Y.t
— 'k 2’““1@: HIGE? | Fi] = vtetr E(Gr — Vf (yk), vit1) | Fr]

— Ytk (Vf(ye), Evesr | Frl) . (10) N
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Accelerated SGD: smooth convex

Proof: Inserting (10) into (9), we get

2
t
E Vit | Pl = Ve < et (V£ (), B [Ax | Fel) = 3820 IV £l = 25 19 £ I = et E[(Gh = V (), o) | Fil,

where
Ap = (thrr — D(yr — o) +yp — 2% — vy
= (tet1 — D)(yx — Tr) + Y& — T — tog1 (Thgr — Tr)
= k1Y — b1k — Lot 1 Tht1 + 1T = b1 (U — Trt1) = Vetkt1Gr

Thus E [Ay | Fr] = vtr+1V f(yk) (unbiasedness) and we arrive at
2
E Vir | Fil = Vie < 3t [VF @0l = tetin E[(Gr = V(). vis) | i

< Ytk B [|Ge = V() [ okl | Fr] - (11)

Taking the full expectation in (11) and using Cauchy-Schwarz inequality, we obtain

E Vi) < EVA] + vt [IGs — VS@oI?] | E [loeal?]

1/2 1/2
<EVi] + 9tini sl |[opP] 7 < SEV ]+ > lisioi sl (12)
=1

where kg = [ — 1]. Observe that t , ; — t41 < t implies that

t
<Ml st <te+1<2t VE> 1

bkt + te) (b1 — tr) = thyq — 1 < thg1 = togr < tpgr — t <
lk+1 + Tk

Thus (12) becomes
k

1/2
E[Visr] S E[Vio +2 ) 2itio oisal?] (13)

1=1

As Vi, > 1 ||lup||” by definition, and v, < 1/L, we obtain

B [l < 26 Vi) + 43 vtionk ]
We can now invoke a discrete version of Gronwall’'s lemma (to be stated and p;:\ied shortly) to infer that
E [||vk||2] i < V2K [Vi,] + 4ivitiai, Vk € N.
Returning to (13), we get =
k i
skti B [f (1) — min f] < B [Vi] S E[Vi ] +2 ) vitios <\/m + 42%‘%‘%)
i=1 j=1

k 2
E[Vi,] + (\/QE Vio] +4Z%tiai) . J
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 Discrete Gronwall-Bellman’s lemma

Lemma Let (ay), .y and (bi),cn be sequences of positive real numbers, and c is a positive real number such that

k
a,% < c—|—Zbiai.

i=1
Then

k
ap < \/E+Zbi-
i=1

Proof: Set Ay def SUP < j<f Qj- The, forl <[ <k

l k
al2 §c+AkZbi §c+AkZbi.

Passing to the supremum with respect to [, with 1 <[ < k, we obtain

k
A <c+ Ap) b

1=1

This quadratic polynomial has two roots, only one of which is non-negative, and the
polynomial is positive for

Zf:l bz’ + \/(Zf—l bi)2 + 4c
Ay < 5 | .
L = N

- CIMPA25- 113




Summary of convergence rates

min f(z),

rcRd

feec (RY.

Vanishing step-size (O(1/7/k + 1))

Criterion SGD

Non-convex minee [|E [V £ ()] O(log(k)/Vk)

Non-convex Nk(1/2) | E[f] and E |dist(-, Argmin (f))? O(1/k)
Convex f, ergodic O(log(k)/Vk)

Strongly convex E[f] and E |||z — 2*]° O(1/k)

Vanishing noise, fconvex
Criterion | Condition on the noise Rate

SGD E[f] (k0R) en €0 O(1/k)
Accelerated SGD | E[f] (kok)pen € 41 O(1/k?)

|
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o000 b0

Outline

Stochastic gradient descent for finite sums.

|
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Finite sums

1,1 /md
min — (x € 6 (RY).
min 3 fi(z), fi € (RY)

1=1
® Can model empirical risk minimization f(z) = = > | £;((u;, v;), ).

® Also motivated by the increasing need for distributed optimization in ML, e.g.

Federated Learning :

$ Each component function f; associated with an agent .

$ Agents (vertices) connected through a distributed network (graph).

$ Typical graph topology : star graph where agents are connected to one
central server (data privacy, agents behave independently, etc.).

$ We will not elaborate more on FL but the tools to analyze it are similar to
those developed in this course.

Server

L |
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SGD for finite sums -

1

Input : step-sizes v, > 0, minibatch size b;
Initialization : 2 ;

fork=0,1,...do
Uniformly randomly draw minibatch I, C [n] (with replacement) of size b;

Compute gradient estimate G, = 7 >, V fi(zk);

| Tkt1 = Tk — VG
return x;..

|
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SGD for finite sums :
min — Zfz . fi e R,

rERI M

Input : step-sizes v > 0, mlnlbatch size b;

Initialization : 2 ;

fork=0,1,...do

Uniformly randomly draw minibatch I, C [n] (with replacement) of size b;

Compute gradient estimate G, = 7 >, V fi(zk);

| Tkt1 = Tk — VG
return x;..

® Unbiased estimate : since we sample with replacement the indices

E|Gr|Fi] = Z Vfi(zx) = Vf(zx). Unbiasedness assumption in S99 verified.

® Variance : again sampling with replacement implies
2

> Viilar) = V()| | Fx

1€}

1 & 1
= 3 LA VSl < 5 S I

E |Gy — V()| |]:k:] =

If ;. is bounded a.s. or the f;’s have D-bounded gradients (e.g. logistic regression), then

9 D Variance assumption in S99 verified.
= [HG’“ — Vil |]:’“] =7 b: Variance-complexity trade-off.

|
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- SGD for finite sums -

Input : step-sizes v, > 0, minibatch size b;

Initialization : 2 ;

fork=0,1,...do

Uniformly randomly draw minibatch I, C [n] (with replacement) of size b;

Compute gradient estimate G, = 7 >, V fi(zk);

| Tkt1 = Tk — VG
return x;..

® Unbiased estimate : since we sample with replacement the indices

E|Gr|Fi] = Z Vfi(zx) = Vf(zx). Unbiasedness assumption in S99 verified.

® Variance : again sampling with replacement implies
2

> Viilar) = V()| | Fx

1€}

1 & 1
= 3 LA VSl < 5 S I

E |Gy — V()| |J:k:] =

If ;. is bounded a.s. or the f;’s have D-bounded gradients (e.g. logistic regression), then
9 D Variance assumption in S99 verified.
B {16 - V@)1 7] < - ) Variance-complexty trade-of.

L Many results proved for SGD in the previous chapter hold for finite sums SJ
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Finite sums

Input : step-sizes v, > 0, minibatch size b;
Initialization : 2 ;

fork=0,1,...do
Uniformly randomly draw minibatch I, C [n] (with replacement) of size b;

Compute gradient estimate G, = 7 >, V fi(zk);

| Tkt1 = Tk — VG
return x;..

|
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Finite sums

Input : step-sizes v, > 0, minibatch size b;
Initialization : 2 ;

fork=0,1,...do
Uniformly randomly draw minibatch I, C [n] (with replacement) of size b;

Compute gradient estimate G, = 7 >, V fi(zk);

| Tkt1 = Tk — VG
return x;..

® Issues with standard SGD studied in the previous chapter:
® Vanishing step-size allows to annihilate the noise variance (but slow convergence).
® Non-vanishing step-size: at best convergence to a noise dominated region.

L |
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Finite sums

Input : step-sizes v, > 0, minibatch size b;
Initialization : 2 ;

fork=0,1,...do
Uniformly randomly draw minibatch I, C [n] (with replacement) of size b;

Compute gradient estimate G, = 7 >, V fi(zk);

| Tkt1 = Tk — VG
return x;..

® Issues with standard SGD studied in the previous chapter:
® Vanishing step-size allows to annihilate the noise variance (but slow convergence).
® Non-vanishing step-size: at best convergence to a noise dominated region.
® What about finite sums ?
® A (very) special structured objective.
® Can one afford constant step-size for such structure and achieve better convergence rate: YES !

L |
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Finite sums

Input : step-sizes v, > 0, minibatch size b;
Initialization : 2 ;

fork=0,1,...do
Uniformly randomly draw minibatch I, C [n] (with replacement) of size b;

Compute gradient estimate G, = 7 >, V fi(zk);

| Tkt1 = Tk — VG
return x;..

® Issues with standard SGD studied in the previous chapter:
® Vanishing step-size allows to annihilate the noise variance (but slow convergence).
® Non-vanishing step-size: at best convergence to a noise dominated region.
® What about finite sums ?
® A (very) special structured objective.
® Can one afford constant step-size for such structure and achieve better convergence rate: YES !
® The key is variance reduction:
o Sweep incrementally (randomly) across the functions f; and compute gradients.
9 As in SGD, in expectation, the stochastic gradient is an unbiased estimate of the full gradient;
< Different from SGD, the variance of the stochastic gradient converges to 0.

L |
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Variance reduction

® Reduce variance of random variable X using another random variable Y with known expectation :
Z=a(X -Y)+EY]
® We have
E[Z] = oE[X] + (1 — o)E[Y] and Var(Z) = o (Var(X) + Var(Y) — 2Cov(X,Y)) .

® I[fa=1:nobias, a < 1 : potential bias but reduced variance.
® Useful if Y positively correlated to X : reduced variance.

L |
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Variance reduction
min — Zfz . fi e R,

rERE N
® Reduce variance of random variable X using another random variable Y with known expectation :
Z=a(X -Y)+EY]
® We have
E[Z] = oE[X] + (1 — o)E[Y] and Var(Z) = o (Var(X) + Var(Y) — 2Cov(X,Y)) .

® I[fa=1:nobias, a < 1 : potential bias but reduced variance.
® Useful if Y positively correlated to X : reduced variance.
® Application to gradient estimation : Stochastic Variance Reduction Gradient

® Draw uniformly randomly a minibatch I C [n] (with replacement) such that |I| = b.
® X =13 _,Vfilz),Y=3>.,V[fi(Z),a=1,wihZ stored.
® EY]=213" V(&)= V[f(z),ie.full gradient at Z.
® E[Z]=21>"  Vfi(z) = Vf(x) (never computed).
® Var(Y) = 3 Var(Vf;()) (sampling with replacement) 7 drawn uniformly at random in |n], where
Var(V fi(# Z IVA@) IV f@)°
__® Observe the influence of the minibatch size b. = _
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* Stochastic Variance Reduced Gradient (SVRG)

1

Input : number of epochs S, epoch length J, step-size v > 0, minibatch size b;
Initialization : xo = x¢;

fors=0to S —1do

Ls+1,0 = Ts

Compute/store full gradient gs = + > Vfi(Zs);

for)=0toJ —1do

Uniformly randomly draw minibatch I, C [n] (with replacement) of size b;
Compute gradient estimate G541 ; = 1 >ier, (Vfi(Tst1,5) =V [i(Zs)) +Gs ;

| Ts+1,j4+41 — Ls4+1,5 — ’YG5+1,j ,
C’lvjs—l—l — Ls+1,J

return ..

L |
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* Stochastic Variance Reduced Gradient (SVRG)

1

Input : number of epochs S, epoch length J, step-size v > 0, minibatch size b;
Initialization : xo = x¢;

fors=0to S —1do

Ls+1,0 = Ts

Compute/store full gradient gs = + > Vfi(Zs);

for)=0toJ —1do

Uniformly randomly draw minibatch I, C [n] (with replacement) of size b;
Compute gradient estimate G541 ; = 1 >ier, (Vfi(Tst1,5) =V [i(Zs)) +Gs ;

| Ts+1,j4+41 — Ls4+1,5 — ’YG5+1,j ,
C’lvjs—l—l — Ls+1,J

return ..

® One full gradient to store per epoch.
® Gradients in inner loop are not stored (but two of them in minibatches).
® Parameters: epoch length, batch size, step-size.

L |
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- Other Variance Reduced Gradient methods -

» SVRGwithb=1":

s—l—l j — vaz vf’bg (xS—l-l J) vf@y (533))) :

L |
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- Other Variance Reduced Gradient methods -

® SVRGwithb=1":

s—|—1 j — vaz vf’bg (xS—l-l J) vf@y (533))) .

® SAG (Stochastic Average Gradient) : i | | — {Vfia (Ts415) T=14

1
Yst1,j 0.W.

s—l—l J Zys—|—1 j (vfzg (xs—l—l 3) ysﬂ_l,j) — % Zys+1,j+1'
1=1

L |

CIMPA’25- 121



Other Variance Reduced Gradient methods

®» SVRGwithb=1":

s—|—1 J vaz vf’tg (xS—l-l J) vf@y (533))) .

® SAG (Stochastic Average Gradient) : i | — {Vfia (Ts415) T=14

(2
Yst1, 0.W.

s—l—l J Zys—|—1 j (vfzg (5178—|—1 3) ysﬂ_l,j) — % Zys+1,j+1'
1=1

® SAGA : intermediate between SAG and SVRG :

Gst1,j Zys+1 j (Vfij (Ts11,5) — ?JZJHJ) -

|
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Other Variance Reduced Gradient methods

®» SVRGwithb=1":

S—|—1j — vaz

(v fi, (Tsy15) — yi‘il,j)

vfzj (xs—l—l ]) vf%j (538))) .

(]
Ys+1,5

® SAGA : intermediate between SAG and SVRG :

® SAG (Stochastic Average Gradient) : i | — {Vfia (Ts415) T=14

Gst1,j = E :ys—|—1]

o.w.

n
1 i
— n ys+1,j—|—1’
1=1

Gst1 J Zys—l—l J (vfij (5’78+1,j) — y;{l—l,j) °

Unbiased estimate | Without epochs | No gradient storage | Gradient eval/step
SAG X 4 X O(nd) 1
SVRG v X v O(d) 2
SAGA 4 4 X O(nd) 1

|
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L

Other Variance Reduced Gradient methods

®» SVRGwithb=1":

S—|—1j — vaz

® SAG (Stochastic Average Gradient) :

s+1,3 — E :ys—|—1]

® SAGA : intermediate between SAG and SVRG :

S—I—l,J — Zys—l—l,j (vfzg (x8+17j) _ y;{l—l,j) ‘

Unbiased estimate | Without epochs | No gradient storage | Gradient eval/step
SAG X 4 X O(nd) 1
SVRG v X v O(d) 2
SAGA 4 4 X O(nd) 1

We focus in the sequel on SVRG, but many statements extend to SAGA -
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SVRG: smooth non-convex

rER4

min f(2) < -7 fi@), i€ GRS,
=1

Theorem Suppose that f; € %Ll’l(IRd) for alli, and f is bounded from below. Assume thatb < n and~ = n/L, such

thatn €]0,1]
4?72J2
b

+n <L
Then

(i) f(Zs) — min f converges a.s. to a non-negative valued random variable.

(i) 3 oen IVF(E:)]* = 0 as.
(i) Vf(zs) — 0 a.s.
(iv) Forallk € N

2
min K[|V f(z;; 2 =
i UV f(@ig)ll] TG0

(v) If(zs,;), ; is bounded a.s. then dist(Z, Crit(f)) — 0 a.s.

(f (o) — minf).

|
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SVRG: smooth non-convex

min f(2) < -7 fi@), i€ GRS,
=1

rER4

Theorem Suppose that f; € %Ll’l(Rd) for alli, and f is bounded from below. Assume thatb < n and~ = n/L, such
thatn €]0,1]
4?72J2
b

+n <L
Then

(i) f(Zs) — min f converges a.s. to a non-negative valued random variable.

(i) 3 oen IVF(E:)]* = 0 as.
(i) Vf(zs) — 0 a.s.
(iv) Forallk € N

: 2 _ 2(f(zo) — min f)
(i,j)rél[{sl]ﬂme[HVf(flfz,g)H] S

(v) If(zs,;), ; is bounded a.s. then dist(Z, Crit(f)) — 0 a.s.

® s> 1/(nJe) to achieve € accuracy.

® Bigger J (larger pass over data) is better but 77 smaller : trade-off in the choice of (J, b, n).

® J=|Vb] and n = 1/3. Gradient complexity :
® 1 (full gradient at init.) + sn > n/(Je) = 1/(b*/2¢) (full gradient at each epoch) + sJb > b/e (incre-

mental gradients in inner iterations).

® Ifb=1,J =1:2n+ 1/ gradient computations.

® Setting used in practice : J = n (one pass over data per epoch), b = 1, n = 1/(3n). Gradient complexity :
® 1 (full gradient at init.) + sn = n/(nJe) = n/e (full gradient at each epoch) + sJb = n /e (incremental

L gradients in inner iterations). J
9 Ovel’all Z n/&‘. CIMPA125_ 1992



- SVRG: smooth non-convex

Before proving the theorem, we start with the following two lemmas.

Lemma Letz,g € R? and define

vt =1 —~g.

Then for any z € R?, the following holds

H:r;+ — zH2 <||lx — z||2 + 27<g,z — 33+> — H:c+ — :UH2

Proof: Recall that ™ can also be written as the unique minimizer

(See $65) 2z = argmin 2v(g, z — z) + ||z — z|*.
zERY

This objective is strongly convex and thus, for any z € R¢
(3rd item of Theorem 549) ||+ — :13H2 +29(g, 2" —z) < |z — x||” + 2v(g, z — z) — |zt — zH2 .

Rearranging gives the result. N

L |
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SVRG: smooth non-convex

Lemma Assume that f € €, (R?). Letx,g,zt € R? as in the previous lemma and define

Tt =2 —Vf(z).
Then the following holds

2y(f(a*) = f(2)) < 2IVF(x) =gl = Q= AL) ]2 = 2||* =2 |V f(2)].
Proof: Applying the first lemma above with z = 1, we have
lot =2t < e —2*[]" + 21(g. 7" —at) — ot — || (1)

On the other hand, by the descent lemma, we have

Lemma SA1 - f(a*) < f() +(V/(2),o" — )+ 3 o~
= f(@) + (VI ()2 —27) + (V) & —a) + 2 la* o
Definition of 2+ = f(z) +(Vf(x),a* —7T) - }’§;+—x}‘2/7+£“x+—az‘|2.

Multiplying the last inequality by 2+ and adding (1), we obtain
2y(f(a*) = f(2)) < 29(Vf(z) — goa* = 77) = (1 = L) [Jat — || — Jat — 2| - [|z* - =||°
<P Vf(x) = gl® + || = 2| = QA —AL) |2* — 2" = [Jat - 2H|]” -2V @)
=V f(z) =gl = (1 =~L) 2™ —2|* = P |V f ().

|
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SVRG: smooth non-convex

Proof: We now turn to the proof of the theorem. Let the filtration F,11 ; = o((2p.4) 207 _,). Applying Lemma S128 to the SRVG iterates with 2+ =

p=0,q=0
Tsi1,j4+1, T = Tsq1,jand g = Gsy1,5 = %Ziezj<vfi($s+1,j) — Vfi(Zs)) + Vf(Zs), we get
gl 2 1—9L 2 7 2
F@st1g41) < F(@or1,5) + 5 IV (@s41,5) = GorrglI” — o |25 +141 = Zsrr 17 = S IV (@515 (1)
As we sample with replacement, we have 1
E > Viilwers) | Foprg| = V(@ag)

i€l
and (recall that Z; = 541 ,0) 1
I 5 Z vfi(js) | Fst15| = Vf(fs).

'LGIj

Denote (; s+1,; = Vfi(xst1,) — Vfi(Zs) and {511 5 = % Zielj Ci,s+1,5- We have by independence (sample with replacement)

E | IVF(@sr1) = Gorrl | Forrs| = E [llesr1y = Eléorny | Forrall® | Foray)

1 < , 1 < _
= Var [§os [ Forrg] = 15 > Var [Gisg1,1(0 € 1) | Fogaj) < 2 Y E [||Cz’,s+1,j1(l e I;)|* | ]-"s+1,]}
1=1

1=1
1 « 0 . 1 — 0
=13 D ¢isi14lI” Pr(i € 1) = o > G st1,5ll 2)
1=1 1=1
since Pr(i € I;) = b/n. On the other hand
1Cistt. ? = IV fi(zsi1,) — Vfi(@s)||? < L? (R Z4||?. (Lipschitz continuity of the gradient) (3)

Plugging (3) into (2) and the latter into (1) after taking expectation in (1), and since vL = n by definition, we get

nL 2 1—nm 2 Y 2
E[f(zst1g41) | Forrg] < f@srrg) + oo [2sr1y = 26l17 - W]E [||335+1,j+1 — Tog1,5 | ]:s+1,j} = 5 IVF(@sra )l (4)
Definenow Vi1 ; = f(zs41,5)+¢5 [|[Tst1,5 — Ts |* which will serve for our Lyapunov analysis, where c; is defined recursively as c; = Cj+1(1+1/<])+%,

with ¢; = 0. We have

[Zs+1,5+1 — 555H2 = |wsq1,; — js||2 + 2(Ts 41,541 — Tst1,5, Tsy1,j — Ts) + || Tsy1,541 — fL’s+1,j||2

_ 2 2
Young's inequality =1+ 1/J) |51, — Zsl|"+ (1 + J) |

L |
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- SVRG: smooth non-convex

Proof: [continued] Combining this with (2), we get
~ 112
EVst1j+1 [ Fsrrj] = Ef(@sq1j4+1) | Fsvrgl (L +1/J) 25415 — Tsl|” + i1 (1 + J)E {H%H,jﬂ — Ts+1,5

nL -2 1—n
op Hﬂ?s+1,j - %H - WE {H%H,jﬂ — Ls+1,5

Y 2 ~ 12 2
-3 IVf(@sy1)|” +cjr1(T+1/T) (| sq1; — Ts]]” +cjp1(1+ J)E [Hxs+1,j+1 — Toq1]” | fs+1,j}

| Forrs]

< f@os1y) + | ]:S“"’}

nL s
= ) + (410 + ) o - 2l

1—n 2 g 2
+ (cj+1(1 + J) — 7) E [H-Ts—|—1,j—|—1 — $s+1,jH | Fs+1,j} - 5 va(xsﬂ,j)”

Ui 1 2 gl 2

= Vigrj + <Cj+1(1 +J) 4o - —> E {\|ﬂ7s+1,j+1 — Zo1] | ~7:s+1,j] — 5 IVf(@sq1,5)II” -
v 2y 2

We now show that under our assumption 4n*.J2 /b + n < 1, we have ¢;11(1 + J) + n/(27) < 1/2v. Indeed, by recursion on ¢;, we have

_nL 41/ =1 nLJ (1+1/0)777 —1).

G 9 1/7 2%
With the standard inequality log(1 +t) < t,t > 0, we have (1 4+ 1/J)7 =7 = (/=) 1ee(1+1/J) < £(J=3)/J < ¢ and thus
LJ LJ
c; < 772—[)(6—1) < =7
Thus nLJ 212 J* 1 [4n?J? 1
11+ J 2v) < —(1+ J L/2< 2v) = — < —.
¢+l +J)+0/(2y) < ——(1+J)+L/2 < vy +1/(27) 2\ T =%

We has thus shown that
Y 2
E Vit jt1 | For1,] < Vg — 5 IV f(@sr1,5)” -

lterating this inequality from 5 = 0 to J — 1, we obtain
J—1
~ 112 ~ 2 7 2
E[Vsi1,0 | Fsy1,0-1] =E [f($s+1,J) +egllzsir,g — 2" | ]:s-l—l,J—l} < f(@si10) + ¢ 2510 = T6[]7 = 5 S V(@)
j=0

Since 541,75 = Ts4+1, Ts41,0 = Zs by the SVRG epoch update, the last inequality implies that
- ~ ~ Y ~ N\ (12
E|f(@11) | B] < £3) = S IVFE)]

where F, = o (Zo, &1, ..., 705) C Fs _1. We now apply the Robbins-Siegmund lemma in S55 to conclude. H
o (Zo, 1 Ts) +1,J-1 pply g CIMPA’25- 126




- SVRG: smooth with £(1/2) E

min f(2) 2 23" fi(e), i e 6N RY. e k(1/2)
1=1

rERA

Theorem Suppose that f; € €, (R?) foralli and f € £(1/2) and bounded from below. Assume that Argmin (f) #
0 and that (b, v,n) are chosen according to Theorem S126. Then

(i) f(Zs) —min f — 0 and dist(Zs, Argmin (f)) — 0 a.s.

(i) Moreover
gE dist(Zs, Argmin (f))?| < E[f(Zs) —min f] = (1 — yu)® (f(xo) — min f).

L |
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- SVRG: smooth with £(1/2) E

n
. def 1 1,1 /mpd
min f(z) S~ file), fi € € (R, fer(1/2).
B i=1

Theorem Suppose that f; € €, (R?) foralli and f € £(1/2) and bounded from below. Assume that Argmin (f) #
0 and that (b, v,n) are chosen according to Theorem S126. Then

(i) f(Zs) —min f — 0 and dist(Zs, Argmin (f)) — 0 a.s.

(i) Moreover
%E dist(Zs, Argmin (f))?| < E[f(Zs) —min f] = (1 — yu)® (f(xo) — min f).

s > (uy)~tlog(1/e) to achieve € accuracy.

J = |V/b] and n = 1/3. Convergence rate 1 — 11/(3L). Gradient complexity :

® 1 (full gradient atinit.) + sn > n(L/u) log(1/e) (full gradient at each epoch) + sJb > b3/2(L /1) log(1/¢)
(incremental gradients in inner iterations).

® Ifb=1,J=1:2n(L/u)log(1/e) gradient computations.

® J = n (one pass over data per epoch), b = 1, = 1/(3n). Convergence rate 1 — 1/(3nL). Gradient

9
9

complexity :
® n (full gradient atinit.) + sn = n(L/u)log(1/e) (full gradient at each epoch) + sJb = n(L /) log(1/¢)
(incremental gradients in inner iterations).
® Overall 2 n(L/u)log(1/e) gradient computations.
L. The first setting with b = J = 1 has better convergence rate while having the same gradient complexity. J
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- SVRG: smooth with £(1/2) E

Proof: From the proof in S130 we have shown that the SVRG iterates satisfy
- ~ - Y -
E|f@on) | B < £(@0) = 2 IVF@E)I®.
Using the £(1/2) inequality inS51 , we get
B |[(Fo1) | Fo = min f| < f(@) min f = yu(f(Z,) min f) = (1 = y2)(f (&) min f).

Using Lemma S57, we get claim (i). Taking the whole expectation and iterating, we get the exponential convergence
in (ii). H

L |

CIMPA’25- 128



SVRG: smooth convex :

mn
. def 1 1,1
min f(x) = — E fi(x), fi €€, (RY) N convex.
x€Rd n 4

1=1
Theorem Suppose that f; € %Ll’l(Rd) and convex for each i, and f is bounded from below. Assume also that

s« Argmin(f) # () and that (b,~,n) are chosen such that

1+ (1+0)J _

v=mn/L with 2n ; <1,

for some 6 > 0. Then,

() D sen ij_ol(f(xsj) — min f) < +00 a.s.
(i) Vj €40,...,J =1}, f(xs ;) —min f — 0 a.s. as s — +oo at the ergodic rate

— . bL diSt(xo, 8)2
E — <
(@) = min f] £ goom = 2

where T, = Zj:_é >0 i/ (J(s+1)).

(iii) x5 converges a.s. to an S-valued random variable.

|
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SVRG: smooth convex :

. def 1 & ‘ ‘ 1,1 /pd
min flx) = - ;f@(x), fi € €;" (R?) N convex.

Theorem Suppose that f; € %Ll’l(Rd) and convex for each i, and f is bounded from below. Assume also that
s« Argmin(f) # () and that (b,~,n) are chosen such that

1+ (1+0)J _

v=mn/L with 2n ; <1,

for some 6 > 0. Then,

() D sen Zj:_ol(f(xsj) — min f) < +00 a.s.
(i) Vj €40,...,J =1}, f(xs ;) —min f — 0 a.s. as s — +oo at the ergodic rate

— . bL diSt(Qjo, 8)2
E — <
(@) = min f] £ goom = 2

where T, = Zj:_g >0 i/ (J(s+1)).

(iii) x5 converges a.s. to an S-valued random variable.

® s> 0b/(6n*J%) to achieve ¢ accuracy.
® Larger J and smaller b but trade-off with the choice of 7.
® J=|Vb],5§ =1/2,n=1/5= iteration complexity s > 1/c. Gradient complexity :
® 1 (full gradient at init.) + sn > n/e (full gradient at each epoch) + sJb > b%/2 /e (incremental gradients
in inner iterations).
® Overall > n/e gradient computations if b < n?/3.
® J = n (one pass over data per epoch), b =1,6 = 1/2,n=1/(2 + 3n)) = iteration complexity s = 1/«.
Gradient complexity :
® 1 (full gradient at init.) + sn 2> n /e (full gradient at each epoch) + sJb 2 n/e (incremental gradients in

inner iterations).

® Overall > n/e. CIMPA’25- 129



- SVRG: smooth convex :

Proof: Recall the result convergence theorem for the SGD in S106 and the corresponding proof. The lesson taught by that result is that if the variance
vanishes at an appropriate rate, then we are done. This is precisely what we will show for SVRG thanks to variance reduction.

We adopt the same notation as in the proof of Theorem S126 and follow closely the proof in S107. Denote for short S = Argmin (f). Let z* € S be
R4

the closest vector to ,11,;. Recall Go11,; = 3 Dicr, (Vfi(@sy1,5) — V[i(Zs)) + Vf(Zs). Since we sample with replacement, we have (see S130) that
E[Gss1,5 | Fos1,5] = Vf(2s41,5)- Thus, from (1) in $107 applied to the SVRG, we have

E [dist(2s11,5+1,S)? | Forry] < dist(wes1,5:8)” = 29(F(@ar1y) = min f) = (1= 9L) [ Vf(@sry)*
+7°E [va(fﬁsﬂ,j) — G ll” | ]:s+1,j} - (1)

Let Cisv1,j = Vfi(zsi1,5) — Vfi(Ts) and §sp1 5 = %Zigj Gi,s+1,5- It is straightforward to see that E [(; o415 | Fot1,5] = E[&st1,5 | Fsr1,j] =
Vf(£133_|_1,j) — sz(fﬁs) Thus

E [||Vf($s+1,j) — Gayl” | fs+1,j} Var €1y | Forrg] = 43 ZVaI‘ Givs+1,j1(0 € L) | Fpr 4]

1=1

1 , )
< b_2 ZE [||Ci,s+1,j]-(@ < I])H | fs+1,ji| - 2 Z ||C’L s+1 JH PI‘ Z = I b Z HCZ s—l—l,J’
=1

1 n
== IV ilwssny) = V@I @)
1=1

For the rhs term, use Jensens’s inequality and Theorem S49on f; € %Ll’l (R?) to get
I filss1g) = V@ <2 (IV filzorns) = VA + 1V fi(Es) = V("))

<AL ((fi(®st1,5) — fila™) = (Vfila™), w515 — 27)) + (fi(Ts) — fila™) = (Vfi(a™), Zs —27))) .
Averaging this inequality over i € [n], and using that V f(z*) = 0, we get

% Z IV fi(wst1,5) = VIi(@s)II° <AL ((f(ws41,5) — min f) + (f(&5) — min f)).

Plugging this into (2) and then in (1), rearranging and dropping the gradient termin (1) since n = vL < 1, we obtain
42 L

E [dist(zs11,j+1,8) | Fox1,j] < dist(zspr,,8)” — 2y (1 — 2%7) (f(xsy1,) —min f) + ; (f(Zs) — min f). (3)

L |
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- SVRG: smooth convex :

Proof: lterating (3) from 3 = 0to J — 1, we obtain
J—

E [dist(:z:stl,(],S)2 | F3+1’J] < dist(xs+1,0,8)2 — 27 <1 — —> f(zs41,) —min f) +
7=0

—_

DL (7(22) — min 1)

M

= dist(74541,0,S)* — 27 <1 — —> 3 f(zs41,) —min f) — (Q”y (1 — 2%7) — %) (f(Zs) —min f).

Under our assumption on the parameters, we have
2 4vnd _ 40ynJ 2 41+ d)ynJ  4oynd
27<1__77)_ v 40 ad2y(1——n)> (1 +6)ynJ _ 46ynJ

b b - b b )] — b b
Therefore,
46T =
E [diSt($S+1,J,S)2 | .FS_|_17J] S diSt(QJS_f_l,(),S)Q — b Z (f(335+1,j) — min f) .
=0

Since xs41,7 = Ts+1, Ts+1,0 = Ts by the SVRG epoch update, the last inequality reads

J—1
o~ L 46vynJ ,
E [dist(Z541,8)? | Fey1,s] < dist(Zs,S)? — 7)77 Z (f(xs41,5) —min f). (4)
j=0
We are now in position to invoke the Robbins-Siegmund lemma S55 to get that dist(Zs, S) converges a.s. to a non-negative random variable, and that
J—1
> (f(#s41,5) — min f) < +oo as.
§=0

This proves claim (i). The first part of (ii) follows from (i) since all the terms in the series are non-negative. For the rate, we take the full expectation in (4)
and use Jensen’s inequality to see that

46n2 T . _ 2] 1 = .
bL (f(‘r$>_mlnf)§ bL J5+1 ZOJZO 3314_13 mlnf)
< dist(zg, S)? — E[dist(Z,1,S)?] < dist(zg, S)?
- J(s+1) - J(s+1)

Let us prove the last claim (iii). Observe that our proof, and in particular inequality (4), remains valid replacing dist(Z,, S)? by ||z, — a:*||2 forany z* € S.
f(Zs) — min f a.s. from (i), and we have shown that ||Z; — x*|| converges a.s. to a non-negative random variable. However, as we observed in the proof
of SGD (see S108), the event of probability 1 over which convergence of ||Zs — x*|| occurs depends on z*. We then follow exactly the SGD proof in S108
Iticonclude that there exists a set of event 2 of probability one on which x4 indeed converges to an S-valued random variable. N
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Summary of convergence rates

. of 1
min f(z) < zzj filx), fie €M RY.
Criterion SVRG Cond. param.
Non-convex min; jyefs)x () 1B [V f(@i)]]° O(1/(nJs)) y=n/L, n?J?/b+n <1
Non-convex Nk(1/2) | E[f] and E |dist(-, Argmin (f))?| | O(exp(—v/us)) Same
Convex E [f], ergodic O(b/ (> J%s) | v=mn/L,6 > 0,2nTUHDT 1

L |
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