Diffusion problems on metric graphs

Delio Mugnolo

CIMPA School 2025
Transport optimal, EDP et optimisation applications en sciences des données
May 2025

- Heat equation and heat kernels
- 2 An important special case: Laplacians on graphs
- \bigcirc C_0 -semigroups
- 4 Laplacians on metric graphs
- 5 Geometry issues: spectral and thermal

$$\begin{cases} \frac{\partial u}{\partial t}(t,x) = \Delta u(t,x) & t \geq 0, \ x \in \Omega, \\ u(t,z) = 0 & t \geq 0, \ z \in \partial \Omega, \\ u(0,x) = u_0(x) & x \in \Omega. \end{cases}$$

If $\Omega \subset \mathbb{R}^d$ is open bounded, $\partial \Omega$ smooth, then Δ with Dirichlet BCs is self-adjoint and negative semidefinite, and it has compact resolvent:

- the eigenvalues λ_k , $k \in \mathbb{N}$, of $-\Delta$ have finite multiplicities and accumulate at $+\infty$
- there exists an ONB of $L^2(\Omega)$ consisting of corresponding eigenfunctions $\varphi_k, k \in \mathbb{N}$.

$$\begin{cases} \frac{\partial u}{\partial t}(t,x) = \Delta u(t,x) & t \geq 0, \ x \in \Omega, \\ u(t,z) = 0 & t \geq 0, \ z \in \partial \Omega, \\ u(0,x) = u_0(x) & x \in \Omega. \end{cases}$$

If $\Omega\subset\mathbb{R}^d$ is open bounded, $\partial\Omega$ smooth, then Δ with Dirichlet BCs is self-adjoint and negative semidefinite, and it has compact resolvent:

- the eigenvalues λ_k , $k \in \mathbb{N}$, of $-\Delta$ have finite multiplicities and accumulate at $+\infty$
- there exists an ONB of $L^2(\Omega)$ consisting of corresponding eigenfunctions φ_k , $k \in \mathbb{N}$

$$\begin{cases} \frac{\partial u}{\partial t}(t,x) = \Delta u(t,x) & t \geq 0, \ x \in \Omega, \\ u(t,z) = 0 & t \geq 0, \ z \in \partial \Omega, \\ u(0,x) = u_0(x) & x \in \Omega. \end{cases}$$

If $\Omega \subset \mathbb{R}^d$ is open bounded, $\partial \Omega$ smooth, then Δ with Dirichlet BCs is self-adjoint and negative semidefinite, and it has compact resolvent:

- ullet the eigenvalues λ_k , $k\in\mathbb{N}$, of $-\Delta$ have finite multiplicities and accumulate at $+\infty$
- there exists an ONB of $L^2(\Omega)$ consisting of corresponding eigenfunctions φ_k , $k \in \mathbb{N}$.

Solving by Fourier transformation

By Spectral Theorem + elementary functional calculus

$$u(t,x) = e^{t\Delta} u_0(x)$$

$$= \sum_{k \in \mathbb{N}} e^{-t\lambda_k} \langle \varphi_k, u_0 \rangle_{L^2(\Omega)} \varphi_k(x)$$

$$\stackrel{\triangle}{=} \int_{\Omega} \sum_{k \in \mathbb{N}} e^{-t\lambda_k} \varphi_k(x) \varphi_k(y) u_0(y) dy$$

$$=: \int_{\Omega} p_t(x,y) u_0(y) dy$$

Is this legit?

Solving by Fourier transformation

By Spectral Theorem + elementary functional calculus

$$u(t,x) = e^{t\Delta} u_0(x)$$

$$= \sum_{k \in \mathbb{N}} e^{-t\lambda_k} \langle \varphi_k, u_0 \rangle_{L^2(\Omega)} \varphi_k(x)$$

$$\stackrel{\triangle}{=} \int_{\Omega} \sum_{k \in \mathbb{N}} e^{-t\lambda_k} \varphi_k(x) \varphi_k(y) u_0(y) dy$$

$$=: \int_{\Omega} \rho_t(x,y) u_0(y) dy$$

Is this legit?

Solving by Fourier transformation

By Spectral Theorem + elementary functional calculus

$$u(t,x) = e^{t\Delta}u_0(x)$$

$$= \sum_{k \in \mathbb{N}} e^{-t\lambda_k} \langle \varphi_k, u_0 \rangle_{L^2(\Omega)} \varphi_k(x)$$

$$\stackrel{\triangle}{=} \int_{\Omega} \sum_{k \in \mathbb{N}} e^{-t\lambda_k} \varphi_k(x) \varphi_k(y) u_0(y) dy$$

$$=: \int_{\Omega} \rho_t(x,y) u_0(y) dy$$

Is this legit?

Mercer's Theorem

James Mercer

Theorem (Mercer 1909)

Let $\Omega \subset \mathbb{R}^d$ bounded, and let $k \in C(\overline{\Omega} \times \overline{\Omega})$ be a symmetric kernel such that

$$T_k: f \mapsto \int_{\Omega} k(x,y) f(y) d\mu(y)$$

is positive semidefinite on $L^2(\Omega)$. Let $(\varphi_n)_{n\in\mathbb{N}}$ be an ONB of eigenvectors of T_k with eigenvalues $(\lambda_n)_{n\in\mathbb{N}}$. Then

- $(\lambda_n)_{n\in\mathbb{N}}\in\ell^1$;
- the series

$$\sum_{n\in\mathbb{N}}\lambda_n\varphi_n(x)\overline{\varphi_n(y)}$$

converges absolutely and uniformly in $\|(\cdot,\cdot)\|_{\infty}$ for all $(x,y) \in \Omega \times \Omega...$

• ...and it agrees with k(x, y)

Mercer's Theorem

James Mercer

Theorem (Mercer 1909)

Let $\Omega \subset \mathbb{R}^d$ bounded, and let $k \in C(\overline{\Omega} \times \overline{\Omega})$ be a symmetric kernel such that

$$T_k: f \mapsto \int_{\Omega} k(x,y) f(y) d\mu(y)$$

is positive semidefinite on $L^2(\Omega)$. Let $(\varphi_n)_{n\in\mathbb{N}}$ be an ONB of eigenvectors of T_k with eigenvalues $(\lambda_n)_{n\in\mathbb{N}}$. Then

- $(\lambda_n)_{n\in\mathbb{N}}\in\ell^1$;
- the series

$$\sum_{n\in\mathbb{N}}\lambda_n\varphi_n(x)\overline{\varphi_n(y)}$$

converges absolutely and uniformly in $\|(\cdot,\cdot)\|_{\infty}$ for all $(x,y)\in\Omega\times\Omega...$

• ...and it agrees with k(x, y).

Mercer's Theorem revisited

Theorem (Mercer 1909; König 1986)

Let $\Omega \subset \mathbb{R}^d$ bounded, and let $k \in L^\infty(\Omega \times \Omega)$ be a kernel such that

$$T_k: f \mapsto \int_{\Omega} k(x,y) f(y) d\mu(y)$$

is positive semidefinite on $L^2(\Omega)$. Let $(\varphi_n)_{n\in\mathbb{N}}$ be an ONB of eigenvectors of T_k with eigenvalues $(\lambda_n)_{n\in\mathbb{N}}$ s.t. $\sup_{n\in\mathbb{N}}\|\varphi_n\|_\infty\leq C$ for some C>0. Then

- $(\lambda_n)_{n\in\mathbb{N}}\in\ell^1$;
- the series

$$\sum_{n\in\mathbb{N}}\lambda_n\varphi_n(x)\overline{\varphi_n(y)}$$

converges absolutely and uniformly in $\|(\cdot,\cdot)\|_{\infty}$ for $\mu\otimes\mu$ -a.e. $(x,y)\in\Omega\times\Omega...$

• ...and it agrees with k(x, y) for $\mu \otimes \mu$ -a.e. $(x, y) \in \Omega \times \Omega$.

Δ

Wrong in König's book! (formulated under too weak assumptions: counterexamples exist)

<u>This</u> version is correct.

Mercer's Theorem revisited

Theorem (Mercer 1909; König 1986)

Let $\Omega \subset \mathbb{R}^d$ bounded, and let $k \in L^\infty(\Omega \times \Omega)$ be a kernel such that

$$T_k: f \mapsto \int_{\Omega} k(x,y) f(y) d\mu(y)$$

is positive semidefinite on $L^2(\Omega)$. Let $(\varphi_n)_{n\in\mathbb{N}}$ be an ONB of eigenvectors of T_k with eigenvalues $(\lambda_n)_{n\in\mathbb{N}}$ s.t. $\sup_{n\in\mathbb{N}}\|\varphi_n\|_{\infty}\leq C$ for some C>0. Then

- $(\lambda_n)_{n\in\mathbb{N}}\in\ell^1$;
- the series

$$\sum_{n\in\mathbb{N}}\lambda_n\varphi_n(x)\overline{\varphi_n(y)}$$

converges absolutely and uniformly in $\|(\cdot,\cdot)\|_{\infty}$ for $\mu\otimes\mu$ -a.e. $(x,y)\in\Omega\times\Omega...$

• ...and it agrees with k(x, y) for $\mu \otimes \mu$ -a.e. $(x, y) \in \Omega \times \Omega$.

Ŵ

Wrong in König's book! (formulated under too weak assumptions: counterexamples exist)

This version is correct.

Kantorovič-Wulich Theorem

Leonid Vital'evič Kantorovič 1912–1986

Theorem (Kantorovič-Wulich 1937)

Let $p \in [1, \infty)$, and let $(\Omega; \mu)$ be any σ -finite measure space. Any operator in $\mathcal{L}(L^p(\Omega); L^\infty(\Omega))$ is an integral operator with kernel of class $L^\infty(\Omega; L^{p'}(\Omega))$, and vice versa.

Boris Sacharowitsch Wulich 1913–1978

Corollary

Let T be a self-adjoint operator that is bounded from $L^1(\Omega)$ to $L^2(\Omega)$.

- T^*T is an integral operator with kernel of class $L^{\infty}(\Omega \times \Omega)$.
- If Ω has finite measure, then T*T is a Hilbert–Schmidt operator.

Kantorovič-Wulich Theorem

Leonid Vital'evič Kantorovič 1912–1986

Theorem (Kantorovič-Wulich 1937)

Let $p \in [1, \infty)$, and let $(\Omega; \mu)$ be any σ -finite measure space. Any operator in $\mathcal{L}(L^p(\Omega); L^\infty(\Omega))$ is an integral operator with kernel of class $L^\infty(\Omega; L^{p'}(\Omega))$, and vice versa.

Boris Sacharowitsch Wulich 1913–1978

Corollary

Let T be a self-adjoint operator that is bounded from $L^1(\Omega)$ to $L^2(\Omega)$.

- T^*T is an integral operator with kernel of class $L^{\infty}(\Omega \times \Omega)$.
- If Ω has finite measure, then T*T is a Hilbert–Schmidt operator.

Back to the heat equation!

- $e^{t\Delta}$ is compact, self-adjoint, and positive definite, bounded from $L^2(\Omega)$ to $L^{\infty}(\Omega)$, hence $(e^{t\Delta} = e^{\frac{t}{2}\Delta}e^{\frac{t}{2}\Delta})$ from $L^1(\Omega)$ to $L^{\infty}(\Omega)$.
- Kantorovič–Wulich: $\rightsquigarrow p_t \in L^{\infty}(\Omega \times \Omega)$.
- Arendt:

$$p_t(x,y) = \sum_{k \in \mathbb{N}} e^{-t\lambda_k} \varphi_k(x) \varphi_k(y)$$

converges absolutely and uniformly in $\|(\cdot,\cdot)\|_{\infty}$, for all t>0 and all $(x,y)\in\Omega\times\Omega$.

• $e^{t\Delta}$ is of trace class $\forall t > 0$ and $\sup_{t} \|\varphi_k\|_{\infty} < \infty$.

 $p = p_t(x, y)$ is the **heat kernel**:

Knowing p suffices to find a solution of

$$\begin{cases} \frac{\partial u}{\partial t}(t,x) = \Delta u(t,x) & t \geq 0, \ x \in \Omega, \\ u(t,z) = 0 & t \geq 0, \ z \in \partial \Omega, \\ u(0,x) = u_0(x) & x \in \Omega. \end{cases}$$

• If $A = (a_{ij})$ is $n \times n$ matrix and T_A the associated linear transformation, then

$$(T_A\xi)_i=\sum_{j=1}^n a_{ij}\xi_j\equiv \int_{\{1,\ldots,n\}} a(i,j)\xi(j)\,\mathrm{d}\mu(j)$$

i.e., A is the kernel of T_A . So $T_A \xi \equiv A \xi$.

• If A is Hermitian, then there is a change of basis $U: e_k \leftrightarrow \varphi_k$ such that

$$U^*AU = \operatorname{diag}(\lambda_k), \quad \text{i.e.,} \quad T_A\xi \equiv A\xi = \sum_{k=1}^n \lambda_k \langle \xi, \varphi_k \rangle \varphi_k$$

• The linear, finite dimensional dynamical system

$$egin{aligned} \dot{\xi}(t) &= A \xi(t) \qquad t \geq 0, \ \xi(0) &= \xi_0 \end{aligned}$$

is solved by $\xi(t) = e^{tA} \xi_0$, i.e.

$$\xi_i(t) = \sum_{j=1}^n (e^{tA})_{ij} \xi_{0,j} \equiv \int_{\{1,...,n\}} e^{tA}(i,j) \xi_0(j) d\mu(j)$$

• If $A = (a_{ij})$ is $n \times n$ matrix and T_A the associated linear transformation, then

$$(T_A\xi)_i=\sum_{j=1}^n {\sf a}_{ij}\xi_j\equiv \int_{\{1,\ldots,n\}} {\sf a}(i,j)\xi(j)\,\mathrm{d}\mu(j)$$

i.e., A is the kernel of T_A . So $T_A \xi \equiv A \xi$.

• If A is Hermitian, then there is a change of basis $U: e_{\iota} \leftrightarrow \varphi_{\iota}$ such that

$$U^*AU = \operatorname{diag}(\lambda_k), \quad \text{i.e.,} \quad T_A\xi \equiv A\xi = \sum_{k=1}^n \lambda_k \langle \xi, \varphi_k \rangle \varphi_k$$

• The linear, finite dimensional dynamical system

$$\begin{cases} \dot{\xi}(t) = A\xi(t) & t \ge 0, \\ \xi(0) = \xi_0 & \end{cases}$$

is solved by $\xi(t) = e^{tA} \xi_0$, i.e.,

$$\xi_i(t) = \sum_{j=1}^n \left(\mathrm{e}^{tA}\right)_{ij} \xi_{0,j} \equiv \int_{\{1,\ldots,n\}} \mathrm{e}^{tA}(i,j) \xi_0(j) \,\mathrm{d}\mu(j)$$

• If $A = (a_{ij})$ is $n \times n$ matrix and T_A the associated linear transformation, then

$$(T_A\xi)_i=\sum_{j=1}^n a_{ij}\xi_j\equiv \int_{\{1,\ldots,n\}} a(i,j)\xi(j)\,\mathrm{d}\mu(j)$$

i.e., A is the kernel of T_A . So $T_A \xi \equiv A \xi$.

• If A is Hermitian, then there is a change of basis $U: e_k \leftrightarrow \varphi_k$ such that

$$U^*AU=\operatorname{diag}(\lambda_k), \quad \text{i.e.,} \quad T_A\xi\equiv A\xi=\sum_{k=1}^n\lambda_k\langle \xi, \varphi_k
angle arphi_k$$

The linear, finite dimensional dynamical system

$$\begin{cases} \dot{\xi}(t) = A\xi(t) & t \ge 0, \\ \xi(0) = \xi_0 & \end{cases}$$

is solved by $\xi(t)=\mathrm{e}^{tA}\xi_0$, i.e.,

$$\xi_i(t) = \sum_{j=1}^n (\mathrm{e}^{t\mathsf{A}})_{ij} \xi_{0,j} \equiv \int_{\{1,\ldots,n\}} \mathrm{e}^{t\mathsf{A}}(i,j) \xi_0(j) \,\mathrm{d}\mu(j)$$

● Heat kernels of finite dimensional dynamical systems?

• If $A = (a_{ij})$ is $n \times n$ matrix and T_A the associated linear transformation, then

$$(T_A\xi)_i=\sum_{j=1}^n a_{ij}\xi_j\equiv \int_{\{1,\ldots,n\}} a(i,j)\xi(j)\,\mathrm{d}\mu(j)$$

i.e., A is the kernel of T_A . So $T_A \xi \equiv A \xi$.

• If A is Hermitian, then there is a change of basis $U: e_k \leftrightarrow \varphi_k$ such that

$$U^*AU=\operatorname{diag}(\lambda_k), \quad \text{i.e.,} \quad T_A\xi\equiv A\xi=\sum_{k=1}^n\lambda_k\langle \xi, \varphi_k
angle arphi_k$$

• The linear, finite dimensional dynamical system

$$\begin{cases} \dot{\xi}(t) = A\xi(t) & t \ge 0, \\ \xi(0) = \xi_0 & \end{cases}$$

is solved by $\xi(t) = e^{tA}\xi_0$, i.e.,

$$\xi_i(t) = \sum_{j=1}^n (e^{tA})_{ij} \xi_{0,j} \equiv \int_{\{1,...,n\}} e^{tA}(i,j) \xi_0(j) d\mu(j)$$

• If $A = (a_{ij})$ is $n \times n$ matrix and T_A the associated linear transformation, then

$$(T_A\xi)_i=\sum_{j=1}^n a_{ij}\xi_j\equiv \int_{\{1,\ldots,n\}} a(i,j)\xi(j)\,\mathrm{d}\mu(j)$$

i.e., A is the kernel of T_A . So $T_A \xi \equiv A \xi$.

• If A is Hermitian, then there is a change of basis $U: e_k \leftrightarrow \varphi_k$ such that

$$U^*AU = \operatorname{diag}(\lambda_k), \quad \text{i.e.,} \quad T_A\xi \equiv A\xi = \sum_{k=1}^n \lambda_k \langle \xi, \varphi_k \rangle \varphi_k$$

• The linear, finite dimensional dynamical system

$$\begin{cases} \dot{\xi}(t) = A\xi(t) & t \ge 0, \\ \xi(0) = \xi_0 & \end{cases}$$

is solved by $\xi(t) = e^{tA} \xi_0$, i.e.,

$$\xi_i(t) = \sum_{i=1}^n (e^{tA})_{ij} \xi_{0,j} \equiv \int_{\{1,...,n\}} e^{tA} (i,j) \xi_0(j) d\mu(j)$$

• Heat kernels of finite dimensional dynamical systems?

Kernel trick

- If $A=(a_{ij})$ is a stochastic matrix, i.e., A is positive and $A\mathbb{1}=\mathbb{1}$, then $0\leq a_{ij}\leq 1$ and $\sum_j a_{ij}=1$.
- Therefore, each $(a_{ij})_j$ can be regarded as a **probability distribution**: the larger a_{ij} , the more akin i, j.
- ullet i,j are just numbers! or perhaps features of inputs in a general data set
- Idea! Compare x, y by
 - mapping them to numbers $i_{\mathsf{x}}, j_{\mathsf{y}} \in \{1, \dots, n\}$
 - then estimating their kinship via $a_{i_{x},j_{y}}$
- Can do the same for general kernel p of positive semidefinite, Markovian integral operator (but p(x, y) > 1 is possible!, stay tuned).

Kernel trick

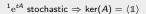
- If $A=(a_{ij})$ is a stochastic matrix, i.e., A is positive and $A\mathbb{1}=\mathbb{1}$, then $0\leq a_{ij}\leq 1$ and $\sum_j a_{ij}=1$.
- Therefore, each $(a_{ij})_j$ can be regarded as a **probability distribution**: the larger a_{ij} , the more akin i, j.
- \bullet i, j are just numbers! or perhaps features of inputs in a general data set.
- Idea! Compare x, y by
 - mapping them to numbers $i_x, j_y \in \{1, \dots, n\}$,
 - then estimating their kinship via a_{i_x,j_y} .
- Can do the same for general kernel p of positive semidefinite, Markovian integral operator (but p(x, y) > 1 is possible!, stay tuned).

Heat kernel trick?

- Let $A = (a_{ij})$ be a matrix s.t. e^{tA} is stochastic for all t.
- Study a family of kernels e^{tA} , $t \in \mathbb{R}$.
- $e^{0A} = Id$: each object is only akin to itself only.
- $e^{tA} \stackrel{t \to \infty}{\to} P_{\ker(A)}$: e.g., any two objects are akin. ¹
- In general, e^{tA} will smoothly interpolate between these behaviors, depending on t ≡ inverse temperature.

Heat kernel trick?

- Let $A = (a_{ij})$ be a matrix s.t. e^{tA} is stochastic for all t.
- Study a family of kernels e^{tA} , $t \in \mathbb{R}$.
- $e^{0A} = Id$: each object is only akin to itself only.
- $e^{tA} \stackrel{t \to \infty}{\to} P_{\ker(A)}$: e.g., any two objects are akin. ¹
- In general, e^{tA} will smoothly interpolate between these behaviors, depending on $t \equiv$ inverse temperature.



- Heat equation and heat kernels
- 2 An important special case: Laplacians on graphs
- \bigcirc C_0 -semigroups
- 4 Laplacians on metric graphs
- **5** Geometry issues: spectral and thermal

Introducing graphs

Graph G = (V, E), with

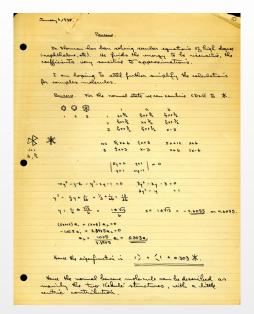
- V vertex set
- E edge set

Introducing graphs

Graph G = (V, E), with

- V vertex set
- E edge set

Graphs as quantum physical models: Linus Pauling 1934



Description of a graph

• via the adjacency matrix
$$A := (a_{vw})$$

$$\textbf{\textit{a}}_{vw} := \left\{ \begin{array}{ll} 1 & \text{if v is adjacent to w ("v} \sim w") \\ 0 & \text{otherwise;} \end{array} \right.$$

Trace $A = 0 \rightsquigarrow A$ has strictly positive and strictly negative eigenvalues.

Geršgorin's Theorem

Semyon Aronovich Geršgorin 1901–1933

Theorem (Geršgorin 1931)

All eigenvalues of a matrix $C = (c_{ij})$ are contained in

$$\bigcup_{i} B(c_{ii}; R_{i})$$

where $R_i := \sum_{i \neq i} |c_{ij}|$.

Idea! Shift the matrix $-\mathcal{A}$ (or $+\mathcal{A})$ by $\mathcal{D}=\mathsf{diag}(\mathsf{deg}(\mathsf{v}))$ with

$$\mathsf{deg}(\mathsf{v}) := \sum_{\mathsf{w} \neq \mathsf{v}} \mathsf{a}_{\mathsf{v}\mathsf{w}}$$

to guarantee that all eigenvalues are ≥ 0 .

Description of a graph

ullet via the adjacency matrix $\mathcal{A}:=(a_{vw})$

• via the Laplacian matrix $\mathcal{L} := \mathcal{D} - \mathcal{A}$, i.e.,

$$\mathcal{L}u_{\mathsf{v}} := \sum_{\mathsf{w} \sim \mathsf{v}} u_{\mathsf{v}} - u_{\mathsf{w}}$$

where

$$\mathcal{D} := \mathsf{diag}(\mathsf{deg}(\mathsf{v})_{\mathsf{v} \in \mathsf{V}}) = \mathsf{diag}(\mathcal{A}\mathbb{1})$$

Example

$$\mathcal{A}_{\mathsf{G}} = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad \mathcal{L}_{\mathsf{G}} = \begin{pmatrix} 4 & -1 & -1 & -1 & -1 \\ -1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Observe: A_G , L_G are irreducible.

More generally: \mathcal{A}_{G} (and then \mathcal{L}_{G} , too) is irreducible iff G is connected.

Alternative description of the Laplacian, after Kirchhoff and Boole

Gustav Robert Kirchhoff 1824–1887

George Boole 1815–1864

- Assign an orientation to each edge of G: $e \equiv \overrightarrow{v w}$ ("e starts in v and ends in w")
- Introduce the signed incidence matrix $\mathcal{I} = (\iota_{ve})$:

$$\iota_{\mathsf{ve}} := \left\{ egin{array}{ll} +1 & \mbox{if e starts in v} \\ -1 & \mbox{if e ends in v} \\ 0 & \mbox{otherwise} \end{array}
ight.$$

• Then $\mathcal{L} = \mathcal{I}\mathcal{I}^T$, and this does *not* depend on the chosen orientation of the edges.

Therefore: $\mathcal L$ is Hermitian, positive semidefinite:

$$0 = \lambda_1 \le \lambda_2 \le \ldots \le \lambda_{\#V} \le 2 \deg_{\mathsf{max}}$$

- m(0) = # of connected components of G
- If G is connected: $\ker(A) = \langle \mathbb{1} \rangle \ (\rightsquigarrow P_{\ker(A)} = \frac{1}{\# \mathsf{V}} \mathbb{1} \cdot \mathbb{1}^{\mathsf{T}})$ and $m(\lambda_2) \in \{1, \dots \# \mathsf{V} 1\}$

Alternative description of the Laplacian, after Kirchhoff and Boole

Gustav Robert Kirchhoff 1824–1887

George Boole 1815–1864

- Assign an orientation to each edge of G: $e \equiv \overrightarrow{v w}$ ("e starts in v and ends in w")
- Introduce the signed incidence matrix $\mathcal{I} = (\iota_{ve})$:

$$\iota_{\mathsf{ve}} := \left\{ egin{array}{ll} +1 & \mbox{if e starts in v} \\ -1 & \mbox{if e ends in v} \\ 0 & \mbox{otherwise} \end{array}
ight.$$

• Then $\mathcal{L} = \mathcal{II}^T$, and this does *not* depend on the chosen orientation of the edges.

Therefore: \mathcal{L} is Hermitian, positive semidefinite:

$$0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_{\#V} \leq 2 \, \mathsf{deg}_{\mathsf{max}}$$

- m(0) = # of connected components of G
- If G is connected: $\ker(A) = \langle \mathbb{1} \rangle \ (\leadsto P_{\ker(A)} = \frac{1}{\#V} \mathbb{1} \cdot \mathbb{1}^T)$ and $m(\lambda_2) \in \{1, \dots \#V 1\}$

Heat semigroup on a graph

• via spectral theorem:

• via exponential formula:

$$\mathrm{e}^{-t\mathcal{L}_\mathsf{G}} = \sum_{j=0}^{\infty} \frac{(-1)^j t^j \mathcal{L}^j}{j!} = ???$$

$$e^{-t\mathcal{L}_{\mathsf{G}}} = \sum_{k=1}^{\#\mathsf{V}} e^{-t\lambda_k} \varphi_k \varphi_k^{\mathsf{T}}$$
$$= \varphi_1 \varphi_1^{\mathsf{T}} + \sum_{k=2}^{\#\mathsf{V}} e^{-t\lambda_k} \varphi_k \varphi_k^{\mathsf{T}} = ???$$

If G connected: $-\lambda_2 < 0$ and $\varphi_1 = \frac{1}{\sqrt{\#V}}\mathbb{1}$, so

$$\|\mathbf{e}^{-t\mathcal{L}_{\mathsf{G}}} - \frac{1}{\#\mathsf{V}}\mathbb{1}\cdot\mathbb{1}^{\mathsf{T}}\| \le \mathbf{e}^{-t\lambda_2}$$

so structure of $G \leftrightarrow rate$ of convergence to equilibrium!

Example (Heat semigroup on 4-star)

Heat semigroup on a graph

• via spectral theorem:

• via exponential formula:

$$\mathrm{e}^{-t\mathcal{L}_\mathsf{G}} = \sum_{j=0}^{\infty} \frac{(-1)^j t^j \mathcal{L}^j}{j!} = ???$$

$$\mathbf{e}^{-t\mathcal{L}_{\mathsf{G}}} = \sum_{k=1}^{\#\mathsf{V}} \mathbf{e}^{-t\lambda_k} \varphi_k \varphi_k^\mathsf{T}$$
$$= \varphi_1 \varphi_1^\mathsf{T} + \sum_{k=2}^{\#\mathsf{V}} \mathbf{e}^{-t\lambda_k} \varphi_k \varphi_k^\mathsf{T} = ???$$

If G connected: $-\lambda_2 < 0$ and $arphi_1 = rac{1}{\sqrt{\#V}}\mathbb{1}$, so

$$\|\mathbf{e}^{-t\mathcal{L}_{\mathsf{G}}} - \frac{1}{\#\mathsf{V}}\mathbb{1} \cdot \mathbb{1}^{\mathsf{T}}\| \le \mathbf{e}^{-t\lambda_2}$$

so structure of $G \leftrightarrow rate$ of convergence to equilibrium!

Example (Heat semigroup on 4-star)

Heat semigroup on a graph

• via spectral theorem:

• via exponential formula:

$$e^{-t\mathcal{L}_{\mathsf{G}}} = \sum_{j=0}^{\infty} \frac{(-1)^{j} t^{j} \mathcal{L}^{j}}{j!} = ???$$

$$\begin{aligned} \mathbf{e}^{-t\mathcal{L}_{\mathsf{G}}} &= \sum_{k=1}^{\#\mathsf{V}} \mathbf{e}^{-t\lambda_k} \varphi_k \varphi_k^\mathsf{T} \\ &= \varphi_1 \varphi_1^\mathsf{T} + \sum_{k=2}^{\#\mathsf{V}} \mathbf{e}^{-t\lambda_k} \varphi_k \varphi_k^\mathsf{T} = ??? \end{aligned}$$

If G connected: $-\lambda_2 < 0$ and $\varphi_1 = \frac{1}{\sqrt{\#V}} \mathbb{1}$, so

$$\|\mathbf{e}^{-t\mathcal{L}_{\mathsf{G}}} - \frac{1}{\#\mathsf{V}}\mathbb{1} \cdot \mathbb{1}^{\mathsf{T}}\| \le \mathbf{e}^{-t\lambda_{2}}$$

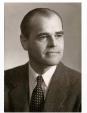
so structure of $G \leftrightarrow rate$ of convergence to equilibrium!

Example (Heat semigroup on 4-star)

$$e^{-t\mathcal{L}_{\mathsf{G}}} =$$

$$\begin{pmatrix} \frac{1}{5} + \frac{4}{5}e^{-5t} & -\frac{1}{5}e^{-5t} + \frac{1}{5} & -\frac{1}{5}e^{-5t} + \frac{1}{5} & -\frac{1}{5}e^{-5t} + \frac{1}{5} \\ -\frac{1}{5}e^{-5t} + \frac{1}{5} & \frac{1}{5} + \frac{3}{4}e^{-t} + \frac{1}{20}e^{-5t} & -\frac{1}{4}e^{-t} + \frac{1}{20}e^{-5t} + \frac{1}{5} & -\frac{1}{4}e^{-t} + \frac{1}{20}e^{-5t} + \frac{1}{5} \\ -\frac{1}{5}e^{-5t} + \frac{1}{5} & -\frac{1}{4}e^{-t} + \frac{1}{20}e^{-5t} + \frac{1}{5} & -\frac{1}{4}e^{-t} + \frac{1}{20}e^{-5t} + \frac{1}{5} \\ -\frac{1}{5}e^{-5t} + \frac{1}{5} & -\frac{1}{4}e^{-t} + \frac{1}{20}e^{-5t} + \frac{1}{5} & -\frac{1}{4}e^{-t} + \frac{1}{20}e^{-5t} + \frac{1}{5} \\ -\frac{1}{5}e^{-5t} + \frac{1}{5} & -\frac{1}{4}e^{-t} + \frac{1}{20}e^{-5t} + \frac{1}{5} & -\frac{1}{4}e^{-t} + \frac{1}{20}e^{-5t} + \frac{1}{5} \\ -\frac{1}{5}e^{-5t} + \frac{1}{5} & -\frac{1}{4}e^{-t} + \frac{1}{20}e^{-5t} + \frac{1}{5} & -\frac{1}{4}e^{-t} + \frac{1}{20}e^{-5t} + \frac{1}{5} \\ -\frac{1}{5}e^{-5t} + \frac{1}{5} & -\frac{1}{4}e^{-t} + \frac{1}{20}e^{-5t} + \frac{1}{5} & -\frac{1}{4}e^{-t} + \frac{1}{20}e^{-5t} + \frac{1}{5} \\ -\frac{1}{5}e^{-5t} + \frac{1}{5} & -\frac{1}{4}e^{-t} + \frac{1}{20}e^{-5t} + \frac{1}{5} & -\frac{1}{4}e^{-t} + \frac{1}{20}e^{-5t} + \frac{1}{5} \\ -\frac{1}{5}e^{-5t} + \frac{1}{5} & -\frac{1}{4}e^{-t} + \frac{1}{20}e^{-5t} + \frac{1}{5} & -\frac{1}{4}e^{-t} + \frac{1}{20}e^{-5t} + \frac{1}{5} \\ -\frac{1}{5}e^{-5t} + \frac{1}{5} & -\frac{1}{4}e^{-t} + \frac{1}{20}e^{-5t} + \frac{1}{5} & -\frac{1}{4}e^{-t} + \frac{1}{20}e^{-5t} + \frac{1}{5} \\ -\frac{1}{5}e^{-5t} + \frac{1}{5} & -\frac{1}{4}e^{-t} + \frac{1}{20}e^{-5t} + \frac{1}{5} \\ -\frac{1}{5}e^{-5t} + \frac{1}{5} & -\frac{1}{4}e^{-t} + \frac{1}{20}e^{-5t} + \frac{1}{5} \\ -\frac{1}{5}e^{-5t} + \frac{1}{5} & -\frac{1}{4}e^{-t} + \frac{1}{20}e^{-5t} + \frac{1}{5} \\ -\frac{1}{5}e^{-5t} + \frac{1}{5} & -\frac{1}{4}e^{-t} + \frac{1}{20}e^{-5t} + \frac{1}{5} \\ -\frac{1}{5}e^{-5t} + \frac{1}{5}e^{-5t} + \frac{1}{$$

Graph Laplacian as generator of a Markov semigroup



Arne Beurling 1905–1986

Theorem (Beurling-Deny 1959)

Let G be a (finite) graph. $-\mathcal{L}_G$ generates a semigroup that is

- positive: $e^{-t\mathcal{L}_G}f \ge 0$ if $f \ge 0$;
- ℓ^{∞} -contractive: $\|e^{-t\mathcal{L}_{\mathsf{G}}}f\|_{\infty} \leq \|f\|_{\infty}$;
- stochastic: $\|e^{-t\mathcal{L}_G}f\|_1 = \|f\|_1$ if $f \ge 0$, i.e., $\mathbb 1$ is the density of an invariant measure;
- irreducible: $e^{-t\mathcal{L}_{\mathsf{G}}}f > 0$ if $f \ge 0$ (if G is connected).

Jacques Deny 1916–2016

Proof.

- \mathcal{L}_{G} is an *M-matrix*: $\mathcal{L}_{vv} \in \mathbb{R}$, $\mathcal{L}_{vw} \leq 0$
- $deg(v) \ge \sum_{w \in V} \mathcal{L}_{vw}$
- $\mathcal{L}_{\mathsf{G}} \mathbb{1} = 0$, hence $e^{-t\mathcal{L}_{\mathsf{G}}} \mathbb{1} \equiv \mathbb{1}$
- G connected $\Leftrightarrow \mathcal{L}_{\mathsf{G}}$ irreducible $\Leftrightarrow \mathrm{e}^{-t\mathcal{L}_{\mathsf{G}}}$ irreducible

Graph Laplacian as generator of a Markov semigroup

Arne Beurling 1905–1986

Theorem (Beurling-Deny 1959)

Let G be a (finite) graph. $-\mathcal{L}_G$ generates a semigroup that is

- positive: $e^{-t\mathcal{L}_G}f \ge 0$ if $f \ge 0$;
- ℓ^{∞} -contractive: $\|e^{-t\mathcal{L}_{\mathsf{G}}}f\|_{\infty} \leq \|f\|_{\infty}$;
- stochastic: $\|\mathbf{e}^{-t\mathcal{L}_{\mathsf{G}}}f\|_1 = \|f\|_1$ if $f \geq 0$, i.e., $\mathbb{1}$ is the density of an invariant measure;
- irreducible: $e^{-t\mathcal{L}_{\mathsf{G}}}f > 0$ if $f \ge 0$ (if G is connected).

Jacques Deny 1916–2016

Proof.

- \mathcal{L}_{G} is an *M-matrix*: $\mathcal{L}_{vv} \in \mathbb{R}$, $\mathcal{L}_{vw} \leq 0$
- ullet deg(v) $\geq \sum\limits_{w \sim v} \mathcal{L}_{vw}$
- $\mathcal{L}_{\mathsf{G}}\mathbb{1} = 0$, hence $\mathrm{e}^{-t\mathcal{L}_{\mathsf{G}}}\mathbb{1} \equiv \mathbb{1}$
- G connected $\Leftrightarrow \mathcal{L}_G$ irreducible $\Leftrightarrow e^{-t\mathcal{L}_G}$ irreducible

Extension #1: Magnetic potentials

In mathematical physics:

$$\Delta \rightsquigarrow (\nabla + i\alpha)^2$$

magnetic potential

For $\tau \in [0, 2\pi)$, consider the magnetic incidence matrix $\mathcal{I}^{(\tau)} = (\iota_{ve}^{(\tau)})$

$$\iota_{\mathsf{ve}}^{(\tau)} := \left\{ \begin{array}{ll} 1 & \text{if } \mathsf{e} = \overrightarrow{\mathsf{vw}} \text{ starts in } \mathsf{v} \\ \mathsf{e}^{i\tau} & \text{if } \mathsf{e} = \overrightarrow{\mathsf{vw}} \text{ ends in } \mathsf{v} \\ 0 & \text{otherwise} \end{array} \right.$$

and the magnetic Laplacian $\mathcal{L}_{\tau} := \mathcal{I}_{\tau} \mathcal{I}_{\tau}^{\mathsf{T}}$.

- $\mathcal{L}_{G} = \mathcal{L}_{-\pi}$:
- \mathcal{L}_{G} is the *comparison matrix* of \mathcal{L}_{τ} , for all τ ;
- $e^{-t\mathcal{L}_G} = e^{-t\mathcal{L}_{-\pi}}$ is the modulus semigroup of $e^{-t\mathcal{L}_{-\tau}}$, for all τ .

Extension #2: Failure of Markov property

Consider the **bi-Laplacian** $\mathcal{L}_{\mathsf{G}}^2$:

- $e^{t\mathcal{L}^2}$ is a contractive semigroup on $\ell^2(V)$;
- (Gregorio–M. 2021) TFAE:
 - $e^{t\mathcal{L}_{\mathsf{G}}^2}$ is positive;
 - $e^{t\mathcal{L}_{\mathsf{G}}^2}$ is ℓ^{∞} -contractive;
 - ► G is the complete graph.

Proposition (Gregorio-M. 2021)

 $e^{t\mathcal{L}_G^2}$ is for all connected G eventually Markovian and irreducible, i.e., for some $t_0=t_0(G)>0$ and all $t\geq t_0$

- $e^{t\mathcal{L}_G^2}f > 0$ for all f > 0.
- $\bullet \| \mathbf{e}^{t\mathcal{L}_{\mathsf{G}}^2} f \|_{\infty} \leq \| f \|_{\infty}.$

Extension #2: Failure of Markov property

Consider the **bi-Laplacian** $\mathcal{L}_{\mathsf{G}}^2$:

- $e^{t\mathcal{L}^2}$ is a contractive semigroup on $\ell^2(V)$;
- (Gregorio-M. 2021) TFAE:
 - $e^{t\mathcal{L}_{\mathsf{G}}^2}$ is positive;
 - $e^{t\mathcal{L}_{\mathsf{G}}^2}$ is ℓ^{∞} -contractive;
 - ► G is the complete graph.

Proposition (Gregorio-M. 2021)

 $\mathrm{e}^{t\mathcal{L}_G^2}$ is for all connected G eventually Markovian and irreducible, i.e., for some $t_0=t_0(G)>0$ and all $t\geq t_0$

- $e^{t\mathcal{L}_G^2}f > 0$ for all $f \ge 0$;
- $\bullet \| \mathrm{e}^{t\mathcal{L}_{\mathsf{G}}^2} f \|_{\infty} \leq \| f \|_{\infty}.$

Extensions #3: Flows in space of probabilities

Theorem (Erbar-Maas 2014)

The heat flow in G = (V, E) can be studied as a flow of a functional in a space of probabilities over V.

Proof.

Discrete Benamou-Brenier-type formula (Maas 2011).

- Heat equation and heat kernels
- 2 An important special case: Laplacians on graphs
- \bigcirc C_0 -semigroups
- 4 Laplacians on metric graphs
- 5 Geometry issues: spectral and thermal

C_0 -semigroups

Definition

Let E be a normed space. A C_0 -semigroup is a family $(T(t))_{t\geq 0}$ of bounded linear operators on E such that

- T(0) = Id
- T(t+s) = T(t)T(s)
- $\lim_{t\to 0} T(t)f = f$ for all $f \in E$.

Example

 $T(t)f(\cdot)=f(t+\cdot)$ is a C_0 semigroup on $E=L^p(\mathbb{R})$ for any $p\in [1,\infty)$. (But not for $p=\infty$: Exercise.)

Example

 $T(t)f(\cdot)=\mathrm{e}^{tq(\cdot)}f(\cdot)$ is a C_0 semigroup on $E=L^p(\Omega)$ for any $p\in [1,\infty)$ and any $q\in L^\infty(X)$.

Generators

Definition

An operator A on E is a generator of a C_0 -semigroup $(T(t))_{t>0}$ on E if

$$D(A) = \left\{ f \in E : \exists \lim_{t \ge 0+} \frac{T(t)f - f}{t} \right\}$$
$$Af = \lim_{t \to 0+} \frac{T(t)f - f}{t}.$$

Example

$$T(t)f(\cdot)=f(t+\cdot)$$
 on $L^p(\mathbb{R})$ is generated by

$$D(A) = W^{1,p}(\mathbb{R})$$

$$Af = f'$$

Example

 $T(t)f(\cdot) = e^{tq(\cdot)}f(\cdot)$ on $L^p(\Omega)$, $\Omega \subset \mathbb{R}^d$ is generated by

$$D(A)=L^p(\Omega)$$

Proposition

For a generator A of a C_0 -semigroup $(T(t))_{t\geq 0}$ on E the following hold:

- A is linear;
- if $f \in D(A)$, then $T(t)f \in D(A)$ and $\frac{d}{dt}T(t)f = T(t)Af = AT(t)f$ for all $t \ge 0$;
- A is closed and densely defined;
 - $(T(t))_{t\geq 0}$ determines its generator uniquely, and vice versa;
 - $Ker(A) = \{ f \in E : T(t)f = f \ \forall t \geq 0 \}.$

Proof.

Exercise

The C_0 -semigroup generated by A is denoted by $(e^{tA})_{t>0}$.

Analytic semigroups

Definition

A C_0 -semigroup $(e^{tA})_{t\geq 0}$ is analytic if

$$||tAe^{tA}f|| \le c||f||$$

for some c > 0 and all $t \in (0,1]$ and $f \in D(A)$.

In particular,

$$\|Ae^{tA}f\| < c(t)\|f\|$$

i.e., e^{tA} is bounded from E to D(A), hence (Exercise) from E to $\bigcap_{k\in\mathbb{N}}D(A^k)$, for all t>0.

Example

- $T(t)f(\cdot) = e^{tq(\cdot)f(\cdot)}$ is analytic, for any $q \in L^{\infty}(\Omega)$;
- $T(t)f(\cdot) = f(t + \cdot)$ is NOT analytic.

Remark

A C_0 -semigroup $(e^{t\Delta_{\mathcal{G}}})_{t>0}$ is analytic if and only if for some $\theta \in (0,\pi)$ it has an analytic extension $(e^{t\Delta_{\mathcal{G}}})_{t\in\Sigma_{\theta}}$ that is bounded on $\Sigma_{\theta}\cap\{z\in\mathbb{C}:|z|\leq1\}$, where

$$\Sigma_{\theta} := \{ r e^{i\alpha} : r > 0, \ |\alpha| < \theta \}.$$

Theorem (Bifulco-M. 2025)

If A generates on $E = L^2(\Omega; \mu)$ an analytic semigroup, and if $D(A^k), D(A'^k) \hookrightarrow C_b(\Omega)$, then there is a pointwise heat kernel associated with A and

$$T(t)f = \int_{Y} p_t(\cdot, y)f(y) d\mu(y), \qquad t \geq 0.$$

Heat kernels

 (Ω, d, μ) metric measure space, A operator on $L^p(\Omega; \mu)$

 $p = p_t(x, y) : (0, \infty) \times \Omega \times \Omega \to \mathbb{C}$ is a **heat kernel** associated with A

- $p_t(\cdot,\cdot): X \times X \to \mathbb{C}$ is measurable; $p_t(x,\cdot) \in L^{p'}(X)$ and $p_t(x,\cdot)f(\cdot) \in L^1(X)$, for all $f \in L^p(X)$, t > 0, a.e. $x \in \Omega$;

- $bleq t \mapsto p_t(\cdot, y)$ belongs to $C^1((0, \infty); L^p(\Omega)) \cap C((0, \infty); D(A_x))$ for a.e. $y \in \Omega$,

pointwise heat kernel if (i), (iii), (iv), (v) hold for all $x, y \in \Omega$.

Let A be differential operator on $L^2(\Omega)$ (with BC)

• If there is a heat kernel associated with A, then

$$\begin{cases} \frac{\partial u}{\partial t}(t,x) = Au(t,x) & t \geq 0, \ x \in \Omega \\ u(0,x) = u_0(x) & x \in \Omega \end{cases}$$

is well-posed: i.e.,

- ▶ for each u_0 there is a solution of (*);
- such a solution is unique;
- \blacktriangleright the solution continuously depends on u_0 .
- But: (*) well-posed $\not\Rightarrow A$ has a heat kernel: e.g. $\Omega = \mathbb{R}$, $A = \frac{\partial}{\partial x} \leadsto u(t,x) = \int_{\mathbb{R}} \delta_{x+t}(y) u_0(y) \, \mathrm{d}y$ but $p_t(\cdot,y) = \delta_{\cdot+t}(y) \in H^{-1}(\mathbb{R}) \setminus L^{\infty}(\mathbb{R}) \, \forall y$.
- A has a heat kernel ⇒

$$p_t(x,y) = \sum_{k \in \mathbb{N}} e^{-t\lambda_k} \varphi_k(x) \varphi_k(y)$$

e.g. $\Omega = \mathbb{R}$, $A = \frac{\partial^2}{\partial x^2}$, $p_t(x,y) = \frac{1}{\sqrt{4\pi t}} e^{-\frac{|x-y|^2}{4t}}$ but no eigenvalues (or for Schrödinger operators: embedded eigenvalues may exist)

Let A be differential operator on $L^2(\Omega)$ (with BC)

• If there is a heat kernel associated with A, then

$$\begin{cases} \frac{\partial u}{\partial t}(t,x) = Au(t,x) & t \geq 0, \ x \in \Omega \\ u(0,x) = u_0(x) & x \in \Omega \end{cases}$$

is well-posed: i.e.,

- ▶ for each u_0 there is a solution of (*);
- such a solution is unique;
- \blacktriangleright the solution continuously depends on u_0 .
- But: (*) well-posed $\not\Rightarrow A$ has a heat kernel: e.g. $\Omega = \mathbb{R}$, $A = \frac{\partial}{\partial x} \leadsto u(t,x) = \int_{\mathbb{R}} \delta_{x+t}(y)u_0(y) \, \mathrm{d}y$ but $p_t(\cdot,y) = \delta_{\cdot,t}(y) \in H^{-1}(\mathbb{R}) \setminus L^{\infty}(\mathbb{R}) \, \forall y$.
- A has a heat kernel ⇒

$$p_t(x,y) = \sum_{k \in \mathbb{N}} e^{-t\lambda_k} \varphi_k(x) \varphi_k(y)$$

e.g. $\Omega = \mathbb{R}$, $A = \frac{\partial^2}{\partial x^2}$, $p_t(x,y) = \frac{1}{\sqrt{4\pi t}} e^{-\frac{|x-y|^2}{4t}}$ but no eigenvalues (or for Schrödinger operators: embedded eigenvalues may exist)

Let A be differential operator on $L^2(\Omega)$ (with BC)

• If there is a heat kernel associated with A, then

(*)
$$\begin{cases} \frac{\partial u}{\partial t}(t,x) = Au(t,x) & t \geq 0, \ x \in \Omega \\ u(0,x) = u_0(x) & x \in \Omega \end{cases}$$

is well-posed: i.e.,

- ▶ for each u_0 there is a solution of (*);
- such a solution is unique;
- the solution continuously depends on u_0 .
- But: (*) well-posed \Rightarrow A has a heat kernel:

e.g.
$$\Omega = \mathbb{R}$$
, $A = \frac{\partial}{\partial x} \rightsquigarrow u(t, x) = \int_{\mathbb{R}} \delta_{x+t}(y) u_0(y) dy$
but $p_t(\cdot, y) = \delta_{\cdot, +t}(y) \in H^{-1}(\mathbb{R}) \setminus L^{\infty}(\mathbb{R}) \forall y$.

• A has a heat kernel \Rightarrow

$$p_t(x,y) = \sum_{k \in \mathbb{N}} e^{-t\lambda_k} \varphi_k(x) \varphi_k(y)$$

e.g. $\Omega = \mathbb{R}$, $A = \frac{\partial^2}{\partial x^2}$, $p_t(x,y) = \frac{1}{\sqrt{4\pi t}} e^{-\frac{|x-y|^2}{4t}}$ but no eigenvalues (or for Schrödinger operators: embedded eigenvalues may exist)

$$p_t(x,y) = \sum_{k \in \mathbb{N}} e^{-t\lambda_k} \varphi_k(x) \varphi_k(y),$$

- useful for numerical purposes (stay tuned)
- difficult to use to deduce qualitative properties of the heat equation.

$$\Omega = (0,\ell)$$
: $A = \frac{\partial^2}{\partial x^2}$ with $D(A) := H^2(0,\ell) \cap H_0^1(0,\ell)$

$$p_t(x,y) = \frac{2}{\ell} \sum_{k=1}^{\infty} e^{-t \frac{\pi^2 k^2}{\ell^2}} \sin(\frac{\pi k x}{\ell}) \sin(\frac{\pi k y}{\ell})$$

$$p_t(x,x) = \frac{2}{\ell} \sum_{k=1}^{\infty} e^{-t\frac{\pi^2 k^2}{\ell^2}} \sin^2(\frac{\pi k x}{\ell}) \ge \frac{2}{\ell} e^{-t\frac{\pi^2}{\ell^2}} \sin^2(\frac{\pi x}{\ell}) \stackrel{t \approx 0}{\approx} \frac{2}{\ell} \sin^2(\frac{\pi x}{\ell}) \stackrel{x = \frac{\ell}{2}}{\approx} \frac{2}{\ell} \sin^2(\frac{\pi x}{\ell})$$

So, p_t need not be ≤ 1 pointwise unless Ω is an atomic measure space

$$p_t(x,y) = \sum_{k \in \mathbb{N}} e^{-t\lambda_k} \varphi_k(x) \varphi_k(y),$$

- useful for numerical purposes (stay tuned)
- difficult to use to deduce qualitative properties of the heat equation.

$$\Omega = (0,\ell)$$
: $A = \frac{\partial^2}{\partial x^2}$ with $D(A) := H^2(0,\ell) \cap H_0^1(0,\ell)$.

$$p_t(x,y) = \frac{2}{\ell} \sum_{k=1}^{\infty} e^{-t\frac{\pi^2 k^2}{\ell^2}} \sin(\frac{\pi kx}{\ell}) \sin(\frac{\pi ky}{\ell})$$

$$p_t(x,x) = \frac{2}{\ell} \sum_{k=1}^{\infty} e^{-t\frac{\pi^2 k^2}{\ell^2}} \sin^2(\frac{\pi kx}{\ell}) \ge \frac{2}{\ell} e^{-t\frac{\pi^2}{\ell^2}} \sin^2(\frac{\pi x}{\ell}) \stackrel{t \approx 0}{\approx} \frac{2}{\ell} \sin^2(\frac{\pi x}{\ell}) \stackrel{x = \frac{\ell}{2}}{=} \frac{2}{\ell}$$

So, p_t need not be ≤ 1 pointwise unless Ω is an atomic measure space.

$$p_t(x,y) = \sum_{k \in \mathbb{N}} e^{-t\lambda_k} \varphi_k(x) \varphi_k(y),$$

- useful for numerical purposes (stay tuned)
- difficult to use to deduce qualitative properties of the heat equation.

$$\Omega = (0,\ell)$$
: $A = \frac{\partial^2}{\partial x^2}$ with $D(A) := H^2(0,\ell) \cap H_0^1(0,\ell)$.

$$p_t(x,y) = \frac{2}{\ell} \sum_{k=1}^{\infty} e^{-t\frac{\pi^2 k^2}{\ell^2}} \sin(\frac{\pi kx}{\ell}) \sin(\frac{\pi ky}{\ell})$$

$$p_{t}(x,x) = \frac{2}{\ell} \sum_{k=1}^{\infty} e^{-t\frac{\pi^{2}k^{2}}{\ell^{2}}} \sin^{2}(\frac{\pi kx}{\ell}) \ge \frac{2}{\ell} e^{-t\frac{\pi^{2}}{\ell^{2}}} \sin^{2}(\frac{\pi x}{\ell}) \stackrel{t \ge 0}{\approx} \frac{2}{\ell} \sin^{2}(\frac{\pi x}{\ell}) \stackrel{t \ge 0}{\approx} \frac{2}{\ell}$$

So, p_t need not be ≤ 1 pointwise unless Ω is an atomic measure space.

$$p_t(x,y) = \sum_{k \in \mathbb{N}} e^{-t\lambda_k} \varphi_k(x) \varphi_k(y),$$

- useful for numerical purposes (stay tuned)
- difficult to use to deduce qualitative properties of the heat equation.

$$\Omega = (0, \ell)$$
: $A = \frac{\partial^2}{\partial x^2}$ with $D(A) := H^2(0, \ell) \cap H_0^1(0, \ell)$.

$$p_t(x,y) = \frac{2}{\ell} \sum_{k=1}^{\infty} e^{-t \frac{\pi^2 k^2}{\ell^2}} \sin(\frac{\pi kx}{\ell}) \sin(\frac{\pi ky}{\ell})$$

$$p_t(x,x) = \frac{2}{\ell} \sum_{k=1}^{\infty} e^{-t\frac{\pi^2 k^2}{\ell^2}} \sin^2(\frac{\pi k x}{\ell}) \ge \frac{2}{\ell} e^{-t\frac{\pi^2}{\ell^2}} \sin^2(\frac{\pi x}{\ell}) \stackrel{t\approx 0}{\approx} \frac{2}{\ell} \sin^2(\frac{\pi x}{\ell}) \stackrel{x=\frac{\ell}{2}}{=} \frac{2}{\ell}$$

So, p_t need not be ≤ 1 pointwise unless Ω is an atomic measure space.

How to recover qualitative properties?

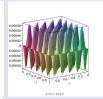
- $p_t(\cdot, \cdot) > 0 \ \forall t \Leftrightarrow \text{parabolic strong maximum principle}$ (i.e., $u_0 \ge 0$, $u \not\equiv 0 \Rightarrow u(t, \cdot) > 0 \ \forall t$)
- $0 \le p_t(\cdot, \cdot)$ and $\int p_t(x, y) dy = 1 \ \forall t, x \Leftrightarrow Markov property$ (i.e., $0 \le u_0 \le 1 \Rightarrow 0 \le u(t, \cdot) \le 1 \ \forall t$)
- $\|p_t(\cdot, \cdot)\|_{L^1} \equiv |\Omega| \ \forall t \Leftrightarrow \text{stochastic}$ (i.e., $0 \le u_0 \Rightarrow \|u(t, \cdot)\|_{L^1} = \|u_0\|_{L^1} \ \forall t$)
- $|p_t^{(1)}(x,y)| \le p_t^{(2)}(x,y) \Leftrightarrow \text{domination}$ (i.e., $|u_0^{(1)}| \le u_0^{(2)} \Rightarrow |u^{(1)}(t)| \le u^{(2)}(t) \ \forall t$)
- $p_t(\cdot, \cdot) \in C^{\infty}(\Omega \times \Omega) \ \forall t > 0 \Leftrightarrow \text{smoothing effect}$ (i.e., $u_0 \in \mathcal{D}'(\Omega) \Rightarrow u(t, \cdot) \in C^{\infty}(\Omega) \ \forall t$); Schwartz-Hörmander

$$\Omega = (0,1) \colon A = \frac{\partial^2}{\partial x^2} \text{ with } D(A) := H^2(0,1) \cap H^1_0(0,1).$$
 Then $\lambda_k = k^2 \pi^2$, $\phi_k(x) = \sqrt{2} \sin(\pi k x)$, $k \in \mathbb{N}$. and

$$p_t(x, y) = 2\sum_{k=1}^{\infty} e^{-t\pi^2 k^2} \sin(\pi kx) \sin(\pi ky)$$

 $p_t(x, y) \ge 0$: Is this true?

addends of the heat kernel:



heat kernel:

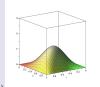
$$\Omega = (0,1) \colon A = \frac{\partial^2}{\partial x^2} \text{ with } D(A) := H^2(0,1) \cap H^1_0(0,1).$$
 Then $\lambda_k = k^2 \pi^2$, $\phi_k(x) = \sqrt{2} \sin(\pi k x)$, $k \in \mathbb{N}$. and

$$p_t(x,y) = 2\sum_{k=1}^{\infty} e^{-t\pi^2 k^2} \sin(\pi kx) \sin(\pi ky)$$

 $p_t(x, y) \ge 0$: Is this true?

addends of the heat kernel:

heat kernel:



A workaround: quadratic forms

Any closed quadratic form $\mathfrak A$ on $L^2(\Omega;\mu)$ is associated with a unique self-adjoint, positive semi-definite operator A on $L^2(\Omega;\mu)$, and vice versa: there holds

$$D(A) = \{ f \in D(\mathfrak{A}) : \exists g \in L^2(\Omega; \mu) \text{s.t. } \mathfrak{a}(f, h) = \langle g, h \rangle \ \forall h \in D(\mathfrak{A}) \}$$

 $Af = -g$

where ${\mathfrak a}$ is the bilinear form corresponding with ${\mathfrak A},$ i.e.,

$$\mathfrak{A}(f) = \frac{1}{2}\mathfrak{a}(f,f) \qquad f \in D(\mathfrak{a}) = D(\mathfrak{A}).$$

Furthermore, A has compact resolvent iff $D(\mathfrak{A})$ is compactly embedded in $L^2(\Omega; \mu)$.

Remark

Equivalently: $A = -\partial_{L^2}\mathfrak{A}$ (Exercise). But: Associated operators on L^2 can be defined even for non-symmetric forms! Idea: use Lax–Milgram instead of Riesz–Fréchet.

Self-adjoint operators and the Spectral Theorem

Let A be a self-adjoint, negative semidefinite operator on $L^2(\Omega;\mu)$ with compact resolvent.

Then

- $L^2(\Omega; \mu)$ has an ONB of eigenvectors of A: $(\varphi_k)_{k \in \mathbb{N}} \sim (-\lambda_k)_{k \in \mathbb{N}}$;
- A can be diagonalized:

$$D(A) = \left\{ f \in L^{2}(\Omega; \mu) : \sum_{k \in \mathbb{N}} \lambda_{k}^{2} \langle f, \varphi_{k} \rangle^{2} < \infty \right\},$$
$$Af = -\sum_{k \in \mathbb{N}} \lambda_{k} \langle f, \varphi_{k} \rangle \varphi_{k}$$

ullet A is associated with a closed quadratic form $\mathfrak{A}\simeq \mathfrak{a}$ given by

$$D(\mathfrak{a}) = \left\{ f \in L^2(\Omega; \mu) : \sum_{k \in \mathbb{N}} \lambda_k \langle f, \varphi_k \rangle^2 < \infty \right\}$$
 $\mathfrak{a}(f, g) = \sum_{k \in \mathbb{N}} \lambda_k \langle f, \varphi_k \rangle \langle \varphi_k, g \rangle.$

Semigroups associatd with closed quadratic forms

Proposition

Every self-adjoint, negative semidefinite operator generates an analytic semigroup.

Proof.

For simplicity, only for operators with compact resolvent:

- By functional calculus, $e^{tA} := \sum_{k \in \mathbb{N}} e^{-t\lambda_k} \langle f, \varphi_k \rangle \varphi_k$ is a well-defined bounded linear operator on $L^2(\Omega; \mu)$;
- Given $f \in D(A)$ and t > 0

$$||tAe^{tA}f||^2 = ||t\frac{\mathrm{d}}{\mathrm{d}t}e^{tA}f||^2 = \sum_{k \in \mathbb{N}} |t\lambda_k e^{-t\lambda_k} \langle f, \varphi_k \rangle|^2 \le \frac{1}{\mathrm{e}} ||f||^2$$

Qualitative properties vs invariance properties via semigroups

El Maati Ouhabaz 1965–

Theorem (Ouhabaz 1996)

Let $(\Omega; \mu)$ be a measure space. Let $\mathfrak A$ be a quadratic form associated with a semigroup e^{tA} on $L^2(\Omega)$. Let C be a closed convex set of $L^2(\Omega)$. TFAE:

- $e^{tA}C \subset C$ for all $t \geq 0$.
- $u \in D(\mathfrak{A})$ and $\mathfrak{a}(P_C u) \leq \mathfrak{a}(u)$ for all $u \in D(\mathfrak{A})$.
- $u \in D(\mathfrak{A})$ and $\operatorname{Re} \mathfrak{a}(P_C u, u P_C u) \geq 0$ for all $u \in D(\mathfrak{A})$.

Corollary (Beurling-Deny 1959)

 $\mathrm{e}^{\mathrm{t}A}$ is positive iff $u^+ \in D(\mathfrak{A})$ and $\mathfrak{A}(u^+) \leq \mathfrak{A}(u)$ for all $u \in D(\mathfrak{A})$.

- Heat equation and heat kernels
- 2 An important special case: Laplacians on graphs
- \bigcirc C_0 -semigroups
- 4 Laplacians on metric graphs
- **5** Geometry issues: spectral and thermal

Introducing metric graphs

Figure: Valentina Vetturi, Tails, 2023

Introducing metric graphs

Let

- $\bullet \ \mathsf{E} = \{\mathsf{e}_1, \mathsf{e}_2, \ldots\} \ \underline{\mathsf{finite}} \ \mathsf{set} \ \big(\, \text{``edge set''} \,\big)$
- \bullet $\ell: \mathsf{E} \to (0,\infty]$ ("edge lengths")
- ullet a metric measure structure (\emph{d}_{e},μ_{e}) on each edge $[0,\ell_{e}]$
- $\bullet \sim$ equivalence relation on $\mathcal{V}:=\bigsqcup_{e\in E}\{0,\ell_e\}$ ("wiring")

Define $\mathcal{E}:=\coprod_{e\in E}[0,\ell_e]$ and extend canonically \sim to $\mathcal{E}.$

Then $\mathcal{G} := \mathcal{E}/_{\sim}$ is a metric graph and $V := \mathcal{V}/_{\sim}$ its vertex set.

G := (V, E) is the underlying combinatorial graph of G.

${\cal G}$ inherits a

- metric d (shortest path metric induced by $(d_e)_{e \in E}$)
- measure μ (direct sum of $(\mu_e)_{e \in E}$)

structure from the MMS structure on each edge.

- Topological features (number κ of connected components, Betti number $\beta := \#E \#V + \kappa$, etc.) are determined by \sim ;
- metric features (diameter) by d;
- ullet measure features (finite measure) by $\mu.$

Unless otherwise mentioned, for all $e \in E$:

- $\ell_{\rm e} < \infty$;
- $d_{\rm e} \equiv$ Euclidean distance
- \bullet $\mu_{\rm e} \equiv$ Lebesgue measure

In this case: $\mathcal G$ is a compact metric space of finite measure.

Goal: define a Laplacian on \mathcal{G} by means of a quadratic function on $L^2(\mathcal{G})$. Idea: integrate $-\Delta_{\mathcal{G}} f \in L^2(\mathcal{G})$ against a test function $h \in C(\mathcal{G}) \cap L^2(\mathcal{G})$.

$$(-\Delta_{\mathcal{G}}f, h) = \int_{\mathcal{G}} f''(x)h(x) dx$$

$$= -\sum_{e \in E} \int_{0}^{\ell_{e}} f_{e}''(x)h_{e}(x) dx$$

$$= -\sum_{e \in E} f_{e}'(x)h_{e}(x) dx \Big|_{x=0}^{x=\ell_{e}} + \sum_{e \in E} \int_{0}^{\ell_{e}} f_{e}'(x)h_{e}'(x) dx$$

$$\stackrel{!}{=} -h(v) \sum_{e \sim v} \frac{\partial f_{e}}{\partial n}(v) + \sum_{e \in E} \int_{0}^{\ell_{e}} f_{e}'(x)h_{e}'(x) dx$$

$$\stackrel{?}{=} \sum_{e \in E} \int_{0}^{\ell_{e}} f_{e}'(x)h_{e}'(x) dx = \mathfrak{a}(f, h)$$

Goal: define a Laplacian on \mathcal{G} by means of a quadratic function on $L^2(\mathcal{G})$. Idea: integrate $-\Delta_{\mathcal{G}} f \in L^2(\mathcal{G})$ against a test function $h \in C(\mathcal{G}) \cap L^2(\mathcal{G})$.

$$(-\Delta_{\mathcal{G}}f, h) = -\int_{\mathcal{G}} f''(x)h(x) dx$$

$$= -\sum_{e \in E} \int_{0}^{\ell_{e}} f_{e}''(x)h_{e}(x) dx$$

$$= -\sum_{e \in E} f_{e}'(x)h_{e}(x) dx \Big|_{x=0}^{x=\ell_{e}} + \sum_{e \in E} \int_{0}^{\ell_{e}} f_{e}'(x)h_{e}'(x) dx$$

$$\stackrel{!}{=} -h(v) \sum_{e \sim v} \frac{\partial f_{e}}{\partial n}(v) + \sum_{e \in E} \int_{0}^{\ell_{e}} f_{e}'(x)h_{e}'(x) dx$$

$$\stackrel{?}{=} \sum_{e \in E} \int_{0}^{\ell_{e}} f_{e}'(x)h_{e}'(x) dx = \mathfrak{a}(f, h)$$

$$H^1(\mathcal{G}) := \{ f \in C(\mathcal{G}) \cap L^2(\mathcal{G}) : f' \in L^2(\mathcal{G}) \}$$

and

$$\textit{D}(\Delta_{\mathcal{G}}) := -\left\{f \in \textit{H}^{1}(\mathcal{G}) \cap \bigoplus_{e \in E} \textit{H}^{2}(0, \ell_{e}) : \sum_{e \sim v} \frac{\partial \textit{f}_{e}}{\partial \textit{n}}(v) = 0 \; \forall v \in V\right\}$$

Proposition (Pavlov-Faddeev 1983, Nicaise 1986)

 $\Delta_{\mathcal{G}}$ is a self-adjoint operator on $L^2(\mathcal{G})$ with compact resolvent.

Proof.

- It suffices to prove that $\Delta_{\mathcal{G}}$ is associated with the closed quadratic form $\mathfrak{a}^{\mathcal{G}}(f,g) := \int_{\mathcal{G}} f'(x)g'(x) \, \mathrm{d}x$ with domain $D(\mathfrak{a}^{\mathcal{G}}) := H^1(\mathcal{G})$.
- Already proved: $\Delta_{\mathcal{G}} \subset A$. Exercise: prove $A \subset \Delta_{\mathcal{G}}$.
- $\bullet \ D(\mathfrak{a}^{\mathcal{G}}) = H^1(\mathcal{G}) \subset \bigoplus_{e \in E} H^1(0, \ell_e) \overset{c}{\hookrightarrow} \bigoplus_{e \in E} L^2(0, \ell_e) = L^2(\mathcal{G}).$

Remark

More generally, every bounded elliptic bilinear form $\mathfrak a$ on $L^2(\Omega;\mu)$ is associated with an operator that generates an analytic semigroup on $L^2(\Omega;\mu)$; the generator is self-adjoint iff $\mathfrak a$ is symmetric.

Spectral properties of $\Delta_{\mathcal{G}}$

 $\Delta_{\mathcal{G}}$ has purely point spectrum.

Denote the eigenvalues of $-\Delta_{\mathcal{G}}$ by

$$0=\lambda_1(\mathcal{G})\leq \lambda_2(\mathcal{G})\leq \dots \nearrow \infty$$

 $\lambda_1(\mathcal{G}) < \lambda_2(\mathcal{G})$ iff \mathcal{G} is connected; otherwise, m(0) = # of connected components of \mathcal{G} .

Parabolic properties of $\Delta_{\mathcal{G}}$

 $\mathrm{e}^{t\Delta_{\mathcal{G}}}$ solves

$$\begin{cases} \frac{\partial u}{\partial t}(t,x) = \frac{\partial^2 u}{\partial x^2}(t,x) & t \geq 0, \ x \in \mathcal{G} \\ u(t,\cdot) \in C(\mathcal{G}), \\ \sum_{e \sim v} \frac{\partial u_e}{\partial n}(t,v) = 0 & t \geq 0, \ v \in V, \\ u(0,x) = u_0(x) & t \geq 0, \ x \in \mathcal{G}. \end{cases}$$

Because $e^{t\Delta_{\mathcal{G}}}$, it maps $L^2(\mathcal{G})$ to $H^1(\mathcal{G})\hookrightarrow L^\infty(\mathcal{G})$:

Kantorovič–Wulich $\leadsto e^{t\Delta}$ has a kernel of class $L^{\infty}(\Omega \times \Omega)$ for all t > 0.

Markovian property

Spectral Theorem: $\Delta_{\mathcal{G};V^D}$ generates an analytic semigroup on $L^2(\mathcal{G})$.

Proposition (Kramar-M.-Sikolya 2007)

 $(\mathrm{e}^{t\Delta_{\mathcal{G}}})_{t\geq 0}$ is a Markovian, stochastic semigroup. In particular $\int_{\mathcal{G}}\int_{\mathcal{G}}p_t(x,y)\,\mathrm{d}x\,\mathrm{d}y=|\mathcal{G}|$ for all $t\geq 0$. $(\mathrm{e}^{t\Delta_{\mathcal{G}}})_{t>0}$ satisfies a strong maximum principle iff \mathcal{G} is connected

→ Feynman-Kac formula holds.

Kostrykin–Potthoff–Schrader 2011: $\Delta_{\mathcal{G}}$ generates a Brownian motion on \mathcal{G} .

Proof

- Beurling-Deny 1959: If $A \sim \mathfrak{a}$, and $\mathfrak{a} \geq 0$, then $(e^{tA})_{t \geq 0}$ is Markovian iff $f \in D(\mathfrak{a})$ implies $f \wedge \mathbf{1} \in D(\mathfrak{a})$ and $\mathfrak{a}(f \wedge \mathbf{1}, (f \mathbf{1})^+) \geq 0$.
- <u>Ouhabaz 1996</u>: If $A \sim \mathfrak{a}$, and if $(e^{tA})_{t \geq 0}$ is positive, then $(e^{tA})_{t \geq 0}$ satisfies the strong maximum principle iff for each measurable $\omega \subset X$ $\mu(\omega) = 0$ or $\mu(X \setminus \omega) = 0$ whenever $\mathbf{1}_{\omega} f \in D(\mathfrak{a})$ for every $f \in D(\mathfrak{a})$.
- $f_{\mathsf{e}} \in H^1(0,\ell_{\mathsf{e}})$ implies $f_{\mathsf{e}} \wedge \mathbf{1} \in H^1(0,\ell_{\mathsf{e}})$ and

$$\int_0^{\ell_e} (f_e \wedge \mathbf{1})'(x)(f_e - \mathbf{1})^+)'(x) \, \mathrm{d}x = \int_{\{f \leq 1\}} (f_e \wedge \mathbf{1})'(x)(f_e - \mathbf{1})^+)'(x) \, \mathrm{d}x = 0.$$

- Also, $\mathbf{1}_{\omega_e} f \not\in H^1(0, \ell_e) \hookrightarrow C[0, \ell_e]$ unless $\omega_e = \emptyset$ or $\omega_e(0, \ell_e)$.
- To conclude, observe that $f \in C(\mathcal{G})$ implies $f \wedge \mathbf{1} \in C(\mathcal{G})$.
- Finally $\operatorname{Ker}(\Delta_{\mathcal{G}}) = \langle \mathbb{1} \rangle$. Hence, $\int_{\mathcal{G}} p_t(x,y) \, \mathrm{d}y = \mathrm{e}^{t\Delta_{\mathcal{G}}} \mathbf{1} = \mathbf{1} \ \forall t \geq 0$.

Dirichlet boundary conditions

Upon imposing Dirichlet conditions on $\mathsf{V}^\mathrm{D} \subset \mathsf{V}$, consider the Sobolev space

$$H^1(\mathcal{G}; V^{\mathcal{D}}) := \{ f \in H^1(\mathcal{G}) : f(v) = 0 \ \forall v \in V^{\mathcal{D}} \}.$$

Restricting $\mathfrak{A}^{\mathcal{G}}$ to $H^1(\mathcal{G}; V^D)$ we obtain

 \bullet a Laplacian $\Delta_{\mathcal{G};V^{\mathrm{D}}}$ with eigenvalues

$$0 < \lambda_1(\mathcal{G}; \mathsf{V}^\mathrm{D}) < \lambda_2(\mathcal{G}; \mathsf{V}^\mathrm{D}) \leq \ldots \nearrow \infty$$

ullet a semigroup $(e^{t\Delta_{\mathcal{G};\mathsf{V}^{\mathrm{D}}}})_{t\geq 0}$ on $L^2(\mathcal{G})$

Proposition (M. 2007)

 $(e^{t\Delta_{\mathcal{G};V^D}})_{t\geq 0}$ is a <u>sub</u>-Markovian, <u>non</u>-stochastic semigroup. $(e^{t\Delta_{\mathcal{G};V^D}})_{t\geq 0}$ satisfies a strong maximum principle iff $\mathcal{G}\setminus V^D$ is connected.

Domination

A C_0 -semigroup $(T(t))_{t\geq 0}$ on $L^p(\Omega)$ is said to **dominate** another C_0 -semigroup $(S(t))_{t\geq 0}$ if $|S(t)f|\leq T(t)|f|$ for all $f\in L^p(\Omega)$ and all $t\geq 0$.

Proposition

 $(e^{t\Delta_{\mathcal{G};V^D}})_{t\geq 0}$ is dominated by $(e^{t\Delta_{\mathcal{G}}})_{t\geq 0}$.

Exercise (Diamagnetic inequality for point interactions)

Same holds if magnetic vertex conditions

$$u(v+) = e^{i\theta_V} u(v-)$$

are imposed on finitely many vertices V^m of degree 2.

Given two subspaces U, V of $L^2(\Omega; \mu)$, U is a **generalized ideal** of V if

- $u \in U \Rightarrow |u| \in V$
- $u \in U$, $v \in V$, $|v| \le |u| \Rightarrow v \operatorname{sgn} u \in U$.

Example

 $H^1_{antiper}(0,1)$ is a generalized ideal of $H^1_{per}(0,1)$; neither of them is a generalized ideal of $H^1(0,1)$, but $H^1_0(0,1)$ is.

Proof

- Fact: Ouhabaz 1996: Let $A \sim \mathfrak{a}$, $B \sim \mathfrak{b}$. If \mathfrak{a} is a restriction of \mathfrak{b} , and if $(\mathrm{e}^{tA})_{t \geq 0}, (\mathrm{e}^{tB})_{t \geq 0}$ are both positive, then $(\mathrm{e}^{tA})_{t \geq 0}$ dominates $(\mathrm{e}^{tB})_{t \geq 0}$ iff $D(\mathfrak{b})$ is a generalized ideal of $D(\mathfrak{a})$.
- ullet No Dirichlet conditions: $\Delta_{\mathcal{G}}$ is associated with the quadratic form

$$\mathfrak{a}(f,g), \qquad f,g \in D(\mathfrak{b}) := H^1(\mathcal{G})$$

(→ positive semigroup)

• If Dirichlet conditions are imposed on $V^{\rm D}\subset V$, then the corresponding operator $\Delta_{\mathcal{G};V^{\rm D}}$ is associated with

$$\mathfrak{b}(f,g) := \mathfrak{a}(f,g), \qquad f,g \in D(\mathfrak{b}) := H_0^1(\mathcal{G};\mathsf{V}^{\mathrm{D}})$$

where $H_0^1(\mathcal{G}; V^D) := \{ f \in H^1(\mathcal{G}) : f(v) = 0 \ \forall v \in V^D \}.$

• Let us check Ouhabaz' criterion: $H_0^1(\mathcal{G}; V^D)$ is a generalized ideal of $H^1(\mathcal{G})$: $f \in H_0^1(\mathcal{G}; V^D) \Rightarrow |f| \in H^1(\mathcal{G})$; and $|g| \leq |f|$ with $f \in H_0^1(\mathcal{G}; V^D) \Rightarrow g \operatorname{sgn} f \in H_0^1(\mathcal{G}; V^D)$.

Theorem (Kramar-M.-Sikolya 2007, M.-Romanelli 2007, Bifulco-M. 2023)

Given \mathcal{G} on finitely many edges of finite length, the Laplacian $\Delta_{\mathcal{G}}$ on \mathcal{G} is associated with a heat kernel $p^{\mathcal{G}} = p_t^{\mathcal{G}}(x, y)$ that satisfies

- $0 \le p_t^{\mathcal{G}}(x, y) \le 1$ for all t and all $x, y \in \mathcal{G}$;
- if \mathcal{G} is connected, $0 < p_t^{\mathcal{G}}(x, y)$ for all t and all $x, y \in \mathcal{G}$;
- $\int_{\mathcal{G}} \int_{\mathcal{G}} p_t^{\mathcal{G}}(x, y) dx dy = |\mathcal{G}|$ for all t > 0.
- if Dirichlet conditions are imposed on a subset $V^{D} \subset \mathcal{G}$, $p_{t}^{\mathcal{G};V^{D}}(x,y) \leq p_{t}^{\mathcal{G}}(x,y)$;
- both $p_t^{\mathcal{G}}$ and $\frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial y^2} p_t^{\mathcal{G}}$ are jointly Lipschitz continuous, but $p_t^{\mathcal{G}}(\cdot, y)$ is not continuously differentiable for any y unless \mathcal{G} is a loop or a path.

Smoothness of functions in $D(\Delta_{\mathcal{G}})$

Lemma (M.-Plümer 2023)

 $D(\Delta_{\mathcal{G}})$ is continuously embedded in $Lip(\mathcal{G})$.

Proof.

- $\bullet \ \ D(\Delta_{\mathcal{G}}) \hookrightarrow \mathcal{C}(\mathcal{G}) \cap \bigoplus_{\mathsf{e} \in \mathsf{F}} H^2(0,\ell_\mathsf{e}) \hookrightarrow \mathcal{C}(\mathcal{G}) \cap \bigoplus_{\mathsf{e} \in \mathsf{F}} W^{1,\infty}(0,\ell_\mathsf{e}).$
- Let $u \in C(\mathcal{G}) \cap \bigoplus_{e \in E} W^{1,\infty}(0,\ell_e)$. Let $x,y \in \mathcal{G}$ and let $\gamma \subset \mathcal{G}$ be a path connecting x and y. Then

$$|u(x) - u(y)| = \left| \int_{\gamma} u'(t) dt \right| \le \operatorname{length}(\gamma) ||u'||_{\infty}.$$

ullet γ arbitrary \Rightarrow

$$|u(x)-u(y)|\leq ||u'||_{\infty}d^{\mathcal{G}}(x,y).$$

Therefore, $C(\mathcal{G}) \cap \bigoplus_{e \in E} W^{1,\infty}(0,\ell_e) \hookrightarrow \operatorname{Lip}(\mathcal{G}).$

′

In particular: eigenfunctions of $\Delta_{\mathcal{G}}$ are Lipschitz continuous (but <u>not</u> continuously differentiable!).

Theorem (Kramar–M.–Sikolya 2007, M.–Romanelli 2007, Bifulco–M. 2023)

Given $\mathcal G$ on finitely many edges of finite length, the Laplacian $\Delta_{\mathcal G}$ on $\mathcal G$ is associated with a heat kernel $p^{\mathcal G}=p_t^{\mathcal G}(x,y)$ that satisfies

- $0 \le p_t^{\mathcal{G}}(x, y)$, $\int : \mathcal{G}p_t(x, z) dz = 1$ for all t and all $x, y \in \mathcal{G}$;
- if \mathcal{G} is connected, $0 < p_t^{\mathcal{G}}(x, y)$ for all t and all $x, y \in \mathcal{G}$;
- $\int_{\mathcal{G}} \int_{\mathcal{G}} p_t^{\mathcal{G}}(x, y) \, dx \, dy = |\mathcal{G}|$ for all t > 0;
- if Dirichlet conditions are imposed on a subset $V^{D} \subset \mathcal{G}$, $p_{t}^{\mathcal{G};V^{D}}(x,y) \leq p_{t}^{\mathcal{G}}(x,y)$;
- both $p_t^{\mathcal{G}}$ and $\frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial y^2} p_t^{\mathcal{G}}$ are jointly Lipschitz continuous, but $p_t^{\mathcal{G}}(\cdot, y)$ is not continuously differentiable for any y unless \mathcal{G} is a loop or a path.

Hence by Mercer:

$$p_t^{\mathcal{G}}(x,y) = \sum \lambda_n \varphi_n(x) \varphi_n(y) \qquad \text{for all } t>0, \ x,y \in \mathcal{G}.$$

(uniform convergence)

Open question: Convergence in Lipschitz norm, too? H^1 -norm?

Proof based on

Theorem (Bifulco-M. 2023)

Let A be self-adjoint and generate an analytic semigroup $(e^{tA})_{t\geq 0}$ on $L^2(X,\mu)$ s.t. $D(A^k)\hookrightarrow C^{0,\alpha}(X)$ for some $k\in\mathbb{N}$ and some $\alpha\in(0,1]$. Then there exists a pointwise heat kernel $p=p.(\cdot,\cdot)$ s.t. $p_t(\cdot,\cdot), A_xA_yp_t(\cdot,\cdot)$ is α -Hölder

continuous for all t > 0.

More general operators

Proposition

Everything we have seen is still valid if Δ is replaced by

$$A_{c,V,\gamma}u := \frac{\partial}{\partial x}\left(c(\cdot)\frac{\partial}{\partial x}\right) + V$$

with "δ-interaction"

continuity +
$$\sum_{e=v} c_e(v) \frac{\partial u_e}{\partial n}(v) + \gamma(v)u(v) = 0$$

for $c \in L^{\infty}(\mathcal{G})$, $V \in L^{1}(\mathcal{G})$, and $(\gamma(v))_{v \in V}$.

Proof.

 $A_{c,V,\gamma}$ is associated with

$$\mathfrak{a}_{c,V,\gamma}^{\mathcal{G}}(f) := \int_{\mathcal{G}} a(x)|f'(x)|^2 dx + \int_{\mathcal{G}} V(x)|f(x)|^2 dx + \sum_{x \in \mathcal{X}} \gamma(x)|f(x)|^2$$

with same form domain $D(\mathfrak{a}_{c,V,\gamma}^{\mathcal{G}}(f)) = D(\mathfrak{a}^{\mathcal{G}}) = H^1(\mathcal{G}).$

Lack of domination

Proposition

If \mathcal{G},\mathcal{G}' any two different wirings over the same edge set, then $e^{t\Delta_{\mathcal{G}}}$ does not dominate $e^{t\Delta_{\mathcal{G}'}}$ for any t>0.

Proof.

$$D(\mathfrak{a}^{\mathcal{G}})$$
 is not a generalized ideal of $D(\mathfrak{a}^{\mathcal{G}'})$ (Exercise)

Miscellaneous comments

- Kennedy–Lang 2020: Similar results also hold operators with $V \in L^1(\mathcal{G}; \mathbb{C})$, $(\gamma(\mathsf{v}))_{\mathsf{v} \in \mathsf{V}} \subset \mathbb{C}$. In particular, $|e^{tA_{c,\mathsf{V},\gamma}}| \leq e^{tA_{c,\mathsf{Re}\,\mathsf{V},\mathsf{Re}\,\gamma}}$
- Kurasov 2010, Berkolaiko–Weyand 2012, Egidi–M.–Seelmann 2023: One can also add a magnetic potential: somewhat trivial, because a gauge transformation makes Δ_{α} similar to Δ . A diamagnetic inequality holds:

$$|e^{t\Delta_{\alpha}}| \le e^{t\Delta}$$
 for all $t > 0$.

• Glück-M. 2021: If $\mathcal{G}, \mathcal{G}'$ any two different wirings over the same edge set, then $e^{t\Delta_{\mathcal{G}}}$ does not even *eventually* dominate $e^{t\Delta_{\mathcal{G}'}}$: there is no $t_0 > 0$ such that $e^{t\Delta_{\mathcal{G}}} \le e^{t\Delta_{\mathcal{G}'}}$ for all $t > t_0$.

Open question: Given two different wirings $\mathcal{G}, \mathcal{G}'$, is there M>0 such that $\mathrm{e}^{t\Delta \mathcal{G}} < M \mathrm{e}^{t\Delta \mathcal{G}'}$ for all t>0?

Extension #1: Different boundary conditions

Consider boundary conditions of type

$$A\underline{f} + B\underline{\underline{f}} = 0$$

where

$$\underline{f} := egin{pmatrix} f_{\mathsf{e}_1}(0) \ dots \ f_{\mathsf{e}_{\#}\mathsf{E}}(0) \ f_{\mathsf{e}_1}(\ell_{\mathsf{e}}) \ dots \ f_{\mathsf{e}_{\#}\mathsf{E}}(\ell_{\#}\mathsf{E}) \end{pmatrix} \qquad \underline{f} := egin{pmatrix} f'_{\mathsf{e}_1}(0) \ dots \ f'_{\mathsf{e}_1}(\ell_{\mathsf{e}}) \ dots \ f'_{\mathsf{e}_{\#}\mathsf{E}}(\ell_{\#}\mathsf{E}) \end{pmatrix}$$

Theorem (Cardanobile-M. 2009; Kurasov 2019)

Only "continuous"-like vertex conditions ($\underline{f} \equiv f_{|V}$) induce a positive semigroup.

Theorem (Hussein-M. 2020)

Let $A, B \in M_2(\mathbb{C})$. Assume the zero k of $\{k : \text{Im } k > 0\} : k \mapsto \det(A + ikB) \in \mathbb{C}$ of larger magnitude lies on $i(0, \infty)$, and let $A \neq \kappa_0 B$ and

$$\lim_{\kappa \searrow \kappa_0} \frac{(\kappa - \kappa_0)^2}{\det(A - \kappa B)} = 0$$

Then $e^{t\Delta}$ is asymptotically eventually positive.

Example

Let $\mathcal{G} \equiv \mathbb{R}$. Then

$$\begin{cases} \frac{\partial u}{\partial t}(t,x) = \frac{\partial^2 u}{\partial x^2}(t,x) & t \geq 0, \ x \in \mathcal{G}, \\ u'(t,0+) = u(t,0-), & t \geq 0, \\ u'(t,0-) = u(t,0+), & t \geq 0, \\ u(0,x) = u_0(x) & x \in \mathcal{G}. \end{cases}$$

is governed by an analytic semigroup on $L^2(\mathcal{G})$ that is not positive; however, it is asymptotically positive.

Extension #2: enlarging the Hillbert space

$$H^1(\mathcal{G}) \equiv \mathbb{H}^1(\mathcal{G}) := \left\{ \begin{pmatrix} f \\ f_{|V|} \end{pmatrix} \in L^2(\mathcal{G}) \oplus \mathbb{R}^{V} : f \in H^1(\mathcal{G}) \right\} \hookrightarrow L^2(\mathcal{G}) \oplus \mathbb{R}^{V} =: \mathbb{L}^2(\mathcal{G})$$

Consider

$$\mathfrak{A}^{\mathcal{G}}(f) = \int_{\mathcal{G}} |f'(x)|^2 dx, \qquad f \in H^1(\mathcal{G})$$

and the operator $\mathbb{A}_{\mathcal{G}}$ associated with $\mathfrak{A}^{\mathcal{G}}$ in $\mathbb{L}^2(\mathcal{G})$.

Diffusion with dynamic boundary conditions

Theorem (M.-Romanelli 2007)

 $\mathbb{\Delta}_{\mathcal{G}}$ is a self-adjoint operator with compact resolvent. $e^{t \mathbb{\Delta}_{\mathcal{G}}}$ solves

$$\begin{cases} \frac{\partial u}{\partial t}(t,x) = \frac{\partial^2 u}{\partial x^2}(t,x) & t \geq 0, \ x \in \mathcal{G}, \\ u(t,\cdot) \in C(\mathcal{G}), \\ \frac{\partial u}{\partial t}(t,v) = -\sum_{e \sim v} \frac{\partial u_e}{\partial n}(t,v) & t \geq 0, \ v \in V, \\ u(0,x) = u_0(x) & t \geq 0, \ x \in \mathcal{G}. \end{cases}$$

 $e^{t \triangle G}$ is a Markovian, stochastic semigroup.

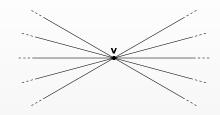
Kostrykin–Potthoff–Schrader 2012; Bonaccorsi–D'Ovidio 2024: $\mathbb{\Delta}_{\mathcal{G}}$ generates a sticky Brownian motion on \mathcal{G} .

Extension #3: modifying the metric measure structure ("tilting")

Let $\mathcal G$ be a star graph, $\ell_{\rm e} \equiv \infty.$ Unless otherwise mentioned:

a d = Euglidean distance

- d ≡ Euclidean distance
- d ≡ Lebesgue measure



In this case: endowing each edge with

- arctan-distance: $d_{arctan}(x, y) = |\arctan(x) \arctan(y)|$
- Gaussian measure: $d\mu(x) := e^{-x^2} dx$
- ${\cal G}$ is a metric space with finite diameter and finite measure: then

$$\bullet \ H^1(\mathcal{G}) \overset{\text{(Carlson 2000)}}{\hookrightarrow} C^{0,\frac{1}{2}}(\overline{\mathcal{G}}) \overset{c}{\hookrightarrow} C(\overline{\mathcal{G}}) \hookrightarrow L^{\infty}(\mathcal{G}) \hookrightarrow L^2(\mathcal{G}).$$

$$\mathfrak{A}^{\mathcal{G}}(f) = \int_{\mathcal{G}} |f'(x)|^2 dx, \qquad f \in H^1(\mathcal{G})$$

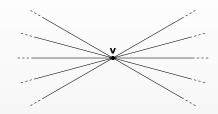
and the operator $A_{OU}^{\mathcal{G}}$ associated with $\mathfrak{A}^{\mathcal{G}}$ in $L^2(\mathcal{G})$.

Extension #3: modifying the metric measure structure ("tilting")

Let ${\cal G}$ be a star graph, $\ell_{\rm e} \equiv \infty.$

Unless otherwise mentioned:

- d ≡ Euclidean distance
- d ≡ Lebesgue measure



In this case: endowing each edge with

- arctan-distance: $d_{arctan}(x, y) = |\arctan(x) \arctan(y)|$
- Gaussian measure: $d\mu(x) := e^{-x^2} dx$

 ${\cal G}$ is a metric space with finite diameter and finite measure: then

$$\bullet \ \ H^1(\mathcal{G}) \overset{(\mathsf{Carlson 2000})}{\hookrightarrow} C^{0,\frac{1}{2}}(\overline{\mathcal{G}}) \overset{c}{\hookrightarrow} C(\overline{\mathcal{G}}) \hookrightarrow L^{\infty}(\mathcal{G}) \hookrightarrow L^2(\mathcal{G}).$$

$$\mathfrak{A}^{\mathcal{G}}(f) = \int_{\mathcal{G}} |f'(x)|^2 dx, \qquad f \in H^1(\mathcal{G})$$

and the operator $A_{OU}^{\mathcal{G}}$ associated with $\mathfrak{A}^{\mathcal{G}}$ in $L^2(\mathcal{G})$.

Extension #2: the Ornstein-Uhlenbeck operator

Theorem (M.-Rhandi 2022)

 $A_{OU}^{\mathcal{G}}$ is self-adjoint in $L^2(\mathcal{G})$ with compact resolvent^a. $e^{tA_{OU}^{\mathcal{G}}}$ solves

$$\begin{cases} \frac{\partial u}{\partial t}(t,x) = \frac{\partial^2 u}{\partial x^2}(t,x) - 2|x| \frac{\partial u}{\partial x}(t,x) & t \geq 0, \ x \in \mathcal{G}, \\ u(t,\cdot) \in C(\mathcal{G}), \\ \sum_{e \sim v} \frac{\partial u_e}{\partial n}(t,v) = 0 & t \geq 0, \ v \in V, \\ u(0,x) = u_0(x) & t \geq 0, \ x \in \mathcal{G}. \end{cases}$$

e^{tA}ou is a Markovian, stochastic semigroup.

 $A_{OU}^{\mathcal{G}}$ generates an Ornstein-Uhlenbeck process on \mathcal{G} .

^aBoth false if Lebesgue measure is considered instead!!!

Extension #3: Flows of different functionals in different metric spaces

Recall:

ullet The **Laplacian** $\Delta_{\mathcal{G}}$ on \mathcal{G} is associated with the quadratic form

$$\mathfrak{A}^{\mathcal{G}}(f) = \frac{1}{2} \int_{\mathcal{G}} |f'|^2 dx, \qquad f \in H^1(\mathcal{G})$$

- Equivalently: the heat equation driven by $\Delta_{\mathcal{G}}$ on $L^2(\mathcal{G})$ is the gradient flow for $\mathfrak{A}^{\mathcal{G}}$ wrt metric of $L^2(\mathcal{G})$.
- The associated semigroup $e^{t\Delta g}$ is Markovian whenever standard conditions are imposed at each $v \in V$, i.e., up to changing \sim with another equivalence relation: i.e., whenever Neumann or continuity+Kirchhoff conditions are imposed.

Example

If $\mathcal G$ consists of <u>one</u> edge, $\mathrm{e}^{t\Delta_{\mathcal G}}$ is Markovian precisely for periodic BCs ($\mathcal G\equiv$ loop) or Neumann BCs ($\mathcal G\equiv$ path)

Markovian flows in spaces of probability measures

Theorem (Jordan-Kinderlehrer-Otto 1998)

The gradient flow of

$$\mathfrak{a}(f) := \frac{1}{2} \int_{\mathbb{R}^d} |\nabla f|^2 \, \mathrm{d} x$$

wrt $L^2(\mathbb{R}^d)$ -metric and the gradient flow of

$$\mathcal{E}(
ho) := \int_{\mathbb{R}^d}
ho \log
ho \,\mathrm{d}
ho$$

wrt Wasserstein metric

$$W_2(\mu,
u) := \min_{\sigma \in \Pi(\mu,
u)} \left(\int_{\mathbb{R}^d imes \mathbb{R}^d} \mathsf{dist}^2(x, y) \, \mathrm{d}\sigma(x, y) \right)^{rac{1}{2}}$$

coincide.

$$(\Pi(\mu, \nu) \equiv \text{set of probability measures on } \mathbb{R}^d \times \mathbb{R}^d \text{ with marginals } \mu, \nu)$$

More precisely:

 \mathcal{E} induces a time-discrete iterative variational scheme whose solutions converge (weakly in $L^1(\mathbb{R}^d)$) to the solution of the heat equation.

Goal: represent

$$\frac{\partial \eta}{\partial t} = \Delta \eta$$

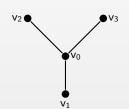
as the gradient flow wrt W_2 of the relative entropy

$$\mathcal{E}(\mu) := \begin{cases} \int_{\mathcal{G}} \eta(x) \log \eta(x) \, \mathrm{d}\lambda(x) & \text{if } \mu = \eta \lambda, \quad (\lambda \equiv \mathsf{Lebesgue}) \\ + \infty & \text{otherwise} \end{cases}$$

Branching of geodesics

A metric space (X,d) is **non-branching** if for any two geodesics $\gamma^1,\gamma^2:[0,1]\to X$ $\gamma_0^1=\gamma_0^2 \text{ and } \gamma_{t_0}^1=\gamma_{t_0}^2 \text{ for some } t_0\Rightarrow \gamma_t^1=\gamma_t^2 \text{ for all } t\in[0,1].$

Problem: In a metric graph there may exist distinct geodesics $\gamma, \tilde{\gamma}: [0,1] \to \mathcal{G}$ that agree on an open subset of [0,1].

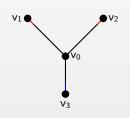


Think of the (constant-speed!) geodesics connecting v_1 with $v_2,$ resp., v_1 with $v_3.$

Branching of geodesics

A metric space (X,d) is **non-branching** if for any two geodesics $\gamma^1,\gamma^2:[0,1]\to X$ $\gamma_0^1=\gamma_0^2 \text{ and } \gamma_{t_0}^1=\gamma_{t_0}^2 \text{ for some } t_0\Rightarrow \gamma_t^1=\gamma_t^2 \text{ for all } t\in[0,1].$

Problem: In a metric graph there may exist distinct geodesics $\gamma, \tilde{\gamma} : [0,1] \to \mathcal{G}$ that agree on an open subset of [0,1].



Lemma (Erbar–Forkert–Maas–M. 2022)

The relative entropy of the optimal coupling of μ and ν is piecewise affine \leadsto NOT geodesically convex.

⚠ Uniqueness???

- \bullet ${\cal G}$ is a geodesic space $\stackrel{Lisini\ 2006}{\leadsto} {\cal P}({\cal G})$ is a geodesic space
- \mathcal{E} is lsc on $(\mathcal{P}(\mathcal{G}); W_2)$, but
- ullet is NOT geodesically convex, and
- still need to extend Benamou-Brenier to metric graphs.

- \bullet ${\cal G}$ is a geodesic space $\stackrel{\text{Lisini 2006}}{\leadsto} {\cal P}({\cal G})$ is a geodesic space
- \mathcal{E} is lsc on $(\mathcal{P}(\mathcal{G}); W_2)$, but
- ullet is NOT geodesically convex, and
- still need to extend Benamou-Brenier to metric graphs.

A dynamic formulation of Wasserstein

Theorem (Benamou-Brenier 2000)

For all probability measures μ, ν on \mathbb{R}^d with finite second moment

$$W_2(\mu, \nu) = \inf_{(\mu_t, v_t)} \left(\int_0^1 \|v_t\|_{L^2(\mu_t)}^2 dt \right)^{\frac{1}{2}}$$

Infimum taken over all curves $\mu_{\cdot}:[0,1] \to (\mathcal{P}(\mathbb{R}^d);W_2)$ s.t. (μ_t, v_t) solves

$$\begin{cases} \frac{\partial \mu_t}{\partial t} = \nabla \cdot (v_t \mu_t), & t \in [0, 1], \\ \mu_0 = \mu, \\ \mu_1 = \nu. \end{cases}$$

A dynamic formulation of Wasserstein on metric graphs

Theorem (Erbar-Forkert-Maas-M. 2022)

For all probability measures μ, ν on $\mathcal G$ with finite second moment

$$W_2(\mu, \nu) = \inf_{(\mu_t, v_t)} \left(\int_0^1 \|v_t\|_{L^2(\mu_t)}^2 dt \right)^{\frac{1}{2}}$$

Infimum taken over all curves $\mu_{\cdot}:[0,1]\to (\mathcal{P}(\mathcal{G});W_2)$ s.t. (μ_t,v_t) is <u>weak solution</u> of

$$\left\{egin{aligned} rac{\partial \mu_t}{\partial t} &=
abla \cdot (
u_t \mu_t), & t \in [0,1], \ \mu_0 &= \mu, \ \mu_1 &=
u \end{aligned}
ight.$$

A JKO-type scheme

Theorem (Erbar–Forker–Mass–M. 2022)

For any probability measure μ_0 on $\mathcal G$ and any au>0, the variational scheme

$$\mu_0^{\tau} := \mu_0$$

$$\mu_n^{\tau} := \operatorname{argmin}_{\nu} \left(\mathcal{E}(\nu) + \frac{1}{2\tau} W_2(\nu, \mu_{n-1}^{\tau})^2 \right)$$

has a solution. Define a piecewise constant curve

$$egin{aligned} ar{\mu}_0^{ au} &:= \mu_0 \ ar{\mu}_t^{ au} &:= \mu_n^{ au} & \textit{if } t \in ((n-1)t, nt]. \end{aligned}$$

As $\tau \to 0$ there exists a subsequence $(\mu_t^{\tau_k})_k$ that weakly converges to a "weak solution μ_t " of the heat equation on \mathcal{G} .

Extension to McKean-Vlasov processes

Given

$$V \in \bigoplus_{e \in E} \operatorname{Lip}(0,\ell_e)$$

 $W \in \operatorname{Lip}(\mathcal{G} \times \mathcal{G})$ and symmetric :

drift interaction

Represent (Fokker–Planck equation of a McKean–Vlasov process!)

$$rac{\partial \eta}{\partial t} = \Delta \eta +
abla \cdot ig(\eta ig(
abla V +
abla W[\mu] ig) ig) \qquad (\mu = \eta \mathrm{e}^{-V} \lambda, \; \lambda = \mathsf{Lebesgue} ig)$$

as the gradient flow wrt W_2 of

$$\mathcal{F}(\mu) := \begin{cases} \int_{\mathcal{G}} \eta(x) \log \eta(x) \, \mathrm{d}\lambda(x) + \int_{\mathcal{G}} \mathbf{V}(x) \eta(x) \, \mathrm{d}\lambda(x) \\ + \frac{1}{2} \int_{\mathcal{G} \times \mathcal{G}} \mathbf{W}(x, y) \eta(x) \eta(y) \, \mathrm{d}\lambda(x) \, \mathrm{d}\lambda(y), \\ + \infty & \text{otherwise.} \end{cases}$$

Theorem (Erbar-Forkert-Maas-M. 2022)

A JKO-like convergence holds: the W_2 -gradient of $\mathcal F$ induces a variational scheme that converges to a weak solution of the Vlasov–McKean equation. Also,

$$rac{\mathrm{d}\mathcal{F}}{\mathrm{d}t}(\mu_t) = -\int_{\mathcal{G}} \left| rac{
abla
ho_t}{
ho_t} +
abla W[\mu_t]
ight|^2 \mathrm{d}\mu_t.$$

- Heat equation and heat kernels
- 2 An important special case: Laplacians on graphs
- \bigcirc C_0 -semigroups
- Laplacians on metric graphs
- 5 Geometry issues: spectral and thermal

Asymptotic expansions in \mathbb{R}^d for the heat kernel p with Dirichlet BCs

On bounded, open $\Omega \subset \mathbb{R}^d$: heat trace $\mathrm{Tr}(\mathrm{e}^{t\Delta})$ and heat content $\mathcal{Q}_t(\Omega)$ satisfy asymptotic expansions.

Theorem (Minakshisundaram-Pleijel 1949)

$$\operatorname{Tr}(e^{t\Delta}) := \int_{\Omega} p_t(x, x) \, \mathrm{d}x$$

$$\approx \frac{1}{(4\pi t)^{\frac{d}{2}}} \sum_{j=0}^{\infty} \alpha_j t^j \quad \text{as } t \searrow 0$$

Theorem (van den Berg-Davies 1989)

Here $\alpha_0=\beta_0=|\Omega|,\ \alpha_1=\frac{\sqrt{\pi}}{2}|\partial\Omega|,\ \beta_1=\frac{2}{\sqrt{\pi}}|\partial\Omega|;$ further terms encode geometry of $\partial\Omega$, many are known (van den Berg–Gilkey 1994)

Sketch of the proofs

- Trace formula: Use Hadamard's parametrix method to find an approximate formula for the heat kernel
- Heat content formula: Apply probabilistic interpretation of the the heat kernel wrt Brownian motion

Asymptotic expansions in $\mathcal G$

Theorem (Roth 1984, Nicaise 1986)

Theorem (Bifulco-M. 2025)

$$egin{aligned} \mathcal{Q}_t(\mathcal{G};\mathsf{V}^\mathrm{D}) &:= \int_{\Omega imes \Omega} p_t^{\mathcal{G};\mathsf{V}^\mathrm{D}}(x,y) \, \mathrm{d}x \, \mathrm{d}y \ &st \sum_{i=0}^\infty eta_i t^{i\over 2} \qquad \textit{as } t \searrow 0 \end{aligned}$$

Here $\alpha_0 = \beta_0 = |\mathcal{G}|$, $\alpha_1 = \frac{\sqrt{\pi}}{2} (\#V - \#V^D - \#E)$, $\beta_1 = \frac{2}{\sqrt{\pi}} \#V^D$; no further nontrivial terms exist in general (Kurasov–Nowaczyk 2005; Bifulco–M. 2025)

Sketch of the proofs

- Trace formula (equilateral case): explicit formula for the eigenvalues + Poisson summation formula
- Trace formula (general case): based on explicit construction of the heat kernel of $(e^{t\Delta_{\mathcal{G}}})_{t>0}$ actually available, via parametrix.

Proposition (Roth 1984)

The heat kernel $p^{\mathcal{G}}$ associated with $\Delta_{\mathcal{G}}$ is given by

$$p_t^{\mathcal{G}}(x,y) := \frac{1}{\sqrt{4\pi t}} \sum_{\gamma \in \mathcal{P}_{x,y}} \alpha(\gamma) e^{-\frac{\operatorname{length}(\gamma)^2}{4t}}$$

for appropriate "scattering coefficients" $\alpha(\gamma) \in [-1,1]$.

• Heat content formula: Roth's formula for the heat kernel + heavy combinatorics

Sketch of the proofs

- Trace formula (equilateral case): explicit formula for the eigenvalues + Poisson summation formula
- Trace formula (general case): based on explicit construction of the heat kernel of $(e^{t\Delta_{\mathcal{G}}})_{t\geq 0}$ actually available, via parametrix.

Proposition (Roth 1984)

The heat kernel $p^{\mathcal{G}}$ associated with $\Delta_{\mathcal{G}}$ is given by

$$p_t^{\mathcal{G}}(x,y) := \frac{1}{\sqrt{4\pi t}} \sum_{\gamma \in \mathcal{P}_{x,y}} \alpha(\gamma) e^{-\frac{\operatorname{length}(\gamma)^2}{4t}}$$

for appropriate "scattering coefficients" $\alpha(\gamma) \in [-1,1]$.

• Heat content formula: Roth's formula for the heat kernel + heavy combinatorics

Heat content formula & Caccioppoli-type formula

Corollary (Bifulco-M. 2025)

$$|\mathcal{Q}_t(\mathcal{G};\mathsf{V}^\mathrm{D}) - |\mathcal{G}| - rac{2\sqrt{t}}{\sqrt{\pi}} \# \mathsf{V}^\mathrm{D}| symp O(t) \quad ext{as } t \searrow 0.$$

Corollary (Bifulco-M. 2025)

If $\mathcal H$ is a closed and connected subset of $\mathcal G\setminus V^{\mathbb D}$ whose boundary in $\mathcal G$ does not contain any vertices of $\mathcal G$ of degree >3, then

$$\lim_{t\to 0^+} \frac{\sqrt{\pi}}{\sqrt{t}} \int_{\mathcal{U}} \int_{\mathcal{G}\setminus\mathcal{U}} p_t^{\mathcal{G};\mathsf{V}^{\mathsf{D}}}(x,y) \,\mathrm{d}y \,\mathrm{d}x = \#\partial\mathcal{H}.$$

(For domains in \mathbb{R}^d : Miranda Jr–Pallara–Paronetto–Preunkert 2007)

Long-time behavior

Recall: $\Delta_{\mathcal{G}}$ has an ONB of eigenfunctions (φ_k) with associated eigenvalues $-\lambda_k = -\lambda_k(\mathcal{G}) \geq 0$.

If $\mathcal G$ is connected, then $\lambda_1=0$ (simple!) with $\varphi_1=\mathbf{1}_{\mathcal G}.$

Because
$$e^{t\Delta_{\mathcal{G}}} f(\cdot) = \sum_{k=0}^{\infty} e^{-t\lambda_k} \varphi_k(\cdot) \int_{\mathcal{G}} \varphi_k(x) f(x) dx$$
,

$$\|e^{t\Delta_{\mathcal{G}}}f - \int_{\mathcal{G}}f(x)\,\mathrm{d}x\| \le e^{-t\lambda_2}\|f\|$$

Estimating λ_2 is crucial to study the long-time behaviour!

Interplays between λ_1 and heat kernel

$$\lim_{t \to \infty} \frac{\log p_t^{\mathcal{G}; \mathsf{V}^\mathrm{D}} \big(x, y \big)}{t} = -\lambda_1(\mathcal{G}; \mathsf{V}^\mathrm{D}) \qquad \text{holds for all } x, y \in \mathcal{G},$$

(applying Keller-Lenz-Vogt-Wojciechowski 2015)

Not aware of estimates on λ_2 based on heat kernel methods, but...

The Laplacian on metric graphs and their underlying combinatorial graphs

Given $\mathcal G$, consider the underlying combinatorial graph G, its degree matrix $\mathcal D^G$ and its discrete Laplacian $\mathcal L^G$.

Proposition (von Below 1985)

If all $\ell_e \equiv \ell$, TFAE:

- λ is eigenvalue of $-\Delta_{\mathcal{G}}$
- $\alpha := \cos \sqrt{\lambda}$ is eigenvalue of $\mathrm{Id} \mathcal{D}_{\mathsf{G}}^{-\frac{1}{2}} \mathcal{L}_{\mathsf{G}} \mathcal{D}_{\mathsf{G}}^{-\frac{1}{2}}$

Nicaise' Isoperimetric Inequality

Theorem (Nicaise 1987)

For any metric graph $\mathcal G$ on finitely many edges of finite length $\lambda_2(\mathcal G) \geq \frac{\pi^2}{|\mathcal G|^2}$, with equality if $\mathcal G = \bullet$

Theorem (Friedlander 2005)

Nicaise' Inequality is sharp. Indeed

$$\lambda_j(\mathcal{G}) \geq rac{\pi^2 j^2}{4|\mathcal{G}|^2}$$
 for all $j=2,3,\ldots,$

with equality if (and only if!) G is a metric star on j edges of same length

Exercise (Nicaise 1987)

Prove the estimate $\lambda_1(\mathcal{G}; V^D) \geq \frac{\pi^2}{4|\mathcal{G}|^2}$ if $V^D \neq \emptyset$, with equality iff $\mathcal{G} = \circ$

Nicaise' Isoperimetric Inequality

Theorem (Nicaise 1987)

For any metric graph $\mathcal G$ on finitely many edges of finite length $\lambda_2(\mathcal G) \geq \frac{\pi^2}{|\mathcal G|^2}$, with equality if $\mathcal G = lacksquare$

Theorem (Friedlander 2005)

Nicaise' Inequality is sharp. Indeed

$$\lambda_j(\mathcal{G}) \geq \frac{\pi^2 j^2}{4|\mathcal{G}|^2}$$
 for all $j = 2, 3, \dots,$

with equality if (and only if!) G is a metric star on j edges of same length.

Exercise (Nicaise 1987)

Prove the estimate $\lambda_1(\mathcal{G}; V^D) \geq \frac{\pi^2}{4|\mathcal{G}|^2}$ if $V^D \neq \emptyset$, with equality iff $\mathcal{G} = \bullet$.

Proof of Nicaise' Inequality - Kurasov-Naboko's version

- Produce $\mathcal{G}_{(2)}$ by replacing each edge e in \mathcal{G} by two identical copies of e: then $|\mathcal{G}_{(2)}|=2|\mathcal{G}|$.
- Take (λ_2, φ_2) and clone φ_2 to produce an admissibile test function $\varphi_2^{(2)}$ for $\lambda_2(\mathcal{G}_{(2)})$: observe that $\varphi_2^{(2)} \perp \mathbf{1}_{\mathcal{G}_{(2)}}$.
- $$\begin{split} \bullet \text{ Also, } \|\varphi_2^{(2)}\|_{L^2}^2 &= 2\|\varphi_2\|_{L^2}^2, \ \|\varphi_2^{(2)'}\|_{L^2}^2 = 2\|\varphi_2'\|_{L^2}^2 \colon \text{ hence} \\ \lambda_2(\mathcal{G}) &= \frac{\|\varphi_2'\|_{L^2}^2}{\|\varphi_2\|_{L^2}^2} \geq \min_{\substack{f \in H^1(\mathcal{G}_{(2)})\\ f \perp 1_{\mathcal{G}_{(2)}}}} \frac{\|f'\|_{L^2}^2}{\|f\|_{L^2}^2} = \lambda_2(\mathcal{G}_{(2)}). \end{split}$$
- Cut through all vertices to turn $\mathcal{G}_{(2)}$ into a cycle \mathcal{C} : this is possible because each vertex in $\mathcal{G}_{(2)}$ has even degree, so $\mathcal{G}_{(2)}$ contains a Eulerian cycle: $\lambda_2(\mathcal{G}_{(2)} \geq \lambda_2(\mathcal{C})$.
- However, $\lambda_2(\mathcal{C}) = \frac{4\pi^2}{|\mathcal{C}|^2} = \frac{\pi^2}{|\mathcal{G}|^2}$.

Selected surgery principles

Proposition (Kennedy-Kurasov-Malenová-M. 2016)

Given \mathcal{G} with finitely many edges of finite length, produce \mathcal{G}' by

- cutting through a vertex v to create two new vertices $v_1, v_2 \in \mathcal{G}$, or
- attaching a pendant graph \mathcal{H} at a vertex $v \in \mathcal{G}$.

Then $\lambda_k(\mathcal{G}) > \lambda_k(\mathcal{G}')$.

Furthermore, $\lambda_2(\mathcal{G}) = \lambda_2(\mathcal{C})$ if

 \mathcal{G} is a figure-8 graph and \mathcal{C} is a cycle graph with $|\mathcal{G}| = |\mathcal{C}|$.

Proof.

- (1) $H^1(\mathcal{G}) \supset H^1(\mathcal{G}')$
- (2) Take (λ_2, φ_2) and extend φ_2 by continuity to a function that is constant on \mathcal{H} . Then $\varphi_2 \mathbf{1}_{\mathcal{G}} - |\mathcal{H}| \mathbf{1}_{\mathcal{H}}$ is orthogonal to $\mathbf{1}_{\mathcal{G}'}$, hence an admissible test function for $\lambda_2(\mathcal{G}')$.
- (3) Construct \mathcal{C} from \mathcal{G} by cutting through the (only) vertex v, thus creating v_1, v_2 . By
- (1), $\lambda_2(\mathcal{C}) < \lambda_2(\mathcal{G})$.

Pick a ground state ψ_2 on \mathcal{C} : up to rotation, wlog $\psi_2(\mathsf{v}_1) = \psi_2(\mathsf{v}_2)$: thus, $\psi_2 \in H^1(\mathcal{G})$ is an admissible test function on \mathcal{G} , hence $\lambda_2(\mathcal{G}) < \lambda_2(\mathcal{C})$.

An upper estimate

Theorem (Kennedy-Kurasov-Malenová-M. 2016)

For any metric graph $\mathcal G$ on $E\geq 2$ edges of finite length

$$\lambda_2(\mathcal{G}) \leq \frac{\pi^2 \mathcal{E}^2}{|\mathcal{G}|^2}.$$

Equality holds for equilateral stars and equilateral pumpkin graphs...

 $\underline{\text{M.-Pivovarchik 2022:}}$...and for an infinite class of metric graphs ("inflated stars", after Butler-Grout 2011).

Proof

- Glue *all* vertices to produce a new metric graph \mathcal{G}' (a "metric flower"): then $\lambda_2(\mathcal{G}) \leq \lambda_2(\mathcal{G}')$.
- Produce a figure-8 graph \mathcal{G}'' by plucking all petals of the metric flower but the two longest ones: then $\lambda_j(\mathcal{G}') \leq \lambda_j(\mathcal{G}'')$ for all j.
- $\lambda_2(\mathcal{G}'') = \lambda_2(\text{Cycle of same total length as } \mathcal{G}') = \frac{4\pi^2}{|\mathcal{G}''|^2}$ (easy proof using symmetry).
- ullet However, by the pigeonhole principle $|\mathcal{G}''| \geq 2 \frac{|\mathcal{G}|}{F}$.

Weyl asymptotics

Recall:

$$\lambda_j(\Delta_{\mathcal{G}}) \geq rac{\pi^2(j+1)^2}{4|\mathcal{G}|^2} \qquad ext{for all } j \in \mathbb{N},$$

Proposition

Given \mathcal{G} on $E < \infty$ edges of finite length,

$$\lambda_j(\mathcal{G}) \leq \frac{E^2 \pi^2 (j+1)^2}{|\mathcal{G}|^2}$$

Proof.

Repeat the previous proof and, in the last step, observe that

$$\lambda_j(\mathcal{G}'') \leq \lambda_{j+1}$$
 (Cycle of same total length as \mathcal{G}') $\leq \frac{(j+1)^2 \pi^2}{|\mathcal{G}''|^2}$ (again by symmetry).

Corollary (Nicaise 1987)

$$\frac{\lambda_j(\mathcal{G})}{j^2} pprox \frac{\pi^2}{|\mathcal{G}|^2}$$

Weyl asymptotics

Recall:

$$\lambda_j(\Delta_{\mathcal{G}}) \geq rac{\pi^2(j+1)^2}{4|\mathcal{G}|^2} \qquad ext{for all } j \in \mathbb{N},$$

Proposition

Given G on $E < \infty$ edges of finite length,

$$\lambda_j(\mathcal{G}) \leq rac{E^2\pi^2(j+1)^2}{|\mathcal{G}|^2}$$

Proof.

Repeat the previous proof and, in the last step, observe that

$$\lambda_j(\mathcal{G}'') \leq \lambda_{j+1}(\text{Cycle of same total length as } \mathcal{G}') \leq \frac{(j+1)^2\pi^2}{|\mathcal{G}''|^2}$$
 (again by symmetry).

Corollary (Nicaise 1987)

$$\frac{\lambda_j(\mathcal{G})}{j^2} \approx \frac{\pi^2}{|\mathcal{G}|^2}$$

Eigenvalue estimates with Dirichlet vertex conditions

Proposition (Plümer 2022)

If G is a graph with finitely many edges of finite length, then

$$\lambda_1(\mathcal{G};\mathsf{V}^\mathrm{D}) \geq rac{1}{|\mathcal{G}|\operatorname{Inr}(\mathcal{G};\mathsf{V}^\mathrm{D})}$$

where $Inr(\mathcal{G}; V^{D}) := \sup_{x \in \mathcal{G}} d(x, V^{D})$.

Proof.

Let $f \in H_0^1(\mathcal{G}; V^D)$, $x \in \mathcal{G}$, $v \in V^D$, γ a geodesic between x, v. Then

$$f\in H^1_0(\mathcal G;\mathsf V^\mathrm D)$$
, $x\in\mathcal G$, $\mathsf v\in\mathsf V^\mathrm D$, γ a geodesic between $x,\mathsf v$. Then
$$f(x)=f(x)-f(\mathsf v)=\int f'(y)\,\mathrm dy$$

and
$$|f(x)|^2 \le L(\gamma) \, \int |f'(y)|^2 \, \mathrm{d}y \le d(x,\mathsf{V}^\mathrm{D}) \|f'\|_{L^2(\mathcal{G})}^2.$$

Therefore,
$$\begin{split} \|f\|_{L^2(\mathcal{G})}^2 &\leq \int_{\mathcal{G}} d(x,\mathsf{V}^\mathrm{D}) \,\mathrm{d}x \|f'\|_{L^2(\mathcal{G})}^2 = |\mathcal{G}| \underbrace{\oint_{\mathcal{G}} d(x,\mathsf{V}^\mathrm{D}) \,\mathrm{d}x} \|f'\|_{L^2(\mathcal{G})}^2 \\ &\leq |\mathcal{G}| \, \mathsf{Inr}(\mathcal{G};\mathsf{V}^\mathrm{D}) \|f'\|_{L^2(\mathcal{G})}^2. \end{split}$$

94 / 107

Lower estimate by diameter and nodal counting

Corollary (Plümer 2022)

If G is a graph with finitely many edges of finite length, then

$$\lambda_2(\mathcal{G}) \geq rac{2}{|\mathcal{G}|\operatorname{\mathsf{Diam}}(\mathcal{G})}.$$

Shape optimization wrt heat kernel?

Recall: If \mathcal{G},\mathcal{G}' are two different wirings over the same edge set,

$$p_t^{\mathcal{G}}(x,y) \le p_t^{\mathcal{G}'}(x,y) \qquad \forall x,y \in \mathcal{G}$$

for all $t \ge 0$ is impossible.

Alternative idea: Consider the **overall insulation** wrt V^D

$$\int_0^\infty \int_{\mathcal{G}} \int_{\mathcal{G}} p_t^{\mathcal{G}; V^{\mathcal{D}}}(x, y) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}t.$$

Remark

- Because $p_t^{\mathcal{G}} \geq 0$, so is $\int_0^\infty \int_{\mathcal{G}} \int_{\mathcal{G}} p_t^{\mathcal{G}}(x, y) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}t$.
- The Green function $G^{\mathcal{G};V^{D}}$ is the Laplace transform of $p_{\cdot}^{\mathcal{G};V^{D}}$ (Exercise).
- If $V^D = \emptyset$, the overall insulation is always $= \infty$, because $\int_{\mathcal{G}} \int_{\mathcal{G}} p_t^{\mathcal{G};V^D}(x,y) \, \mathrm{d}x \, \mathrm{d}y = |\mathcal{G}|$ (Exercise).

Path graphs maximize insulation

Theorem

$$\frac{1}{12} \frac{|\mathcal{G}|^3}{\#\mathsf{E}^3} \le \int_0^\infty \int_{\mathcal{G}} \int_{\mathcal{G}} p_t^{\mathcal{G}}(x,y) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}t \le \frac{1}{3} |\mathcal{G}|^3$$

Lower estimate is an equality iff $\mathcal{G}=$

Upper estimate is an equality iff $G = \bullet$

Proof (upper estimate)

- $\int_0^\infty p_t^{\mathcal{G}}(x,y) \, \mathrm{d}t$ is the Green's function of \mathcal{G} , i.e., the integral kernel of Δ^{-1} .
- Thus, $\int_0^\infty \int_{\mathcal{G}} \int_{\mathcal{G}} p_t^{\mathcal{G}}(x,y) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}t = -\int_{\mathcal{G}} \Delta^{-1} \mathbb{1}(x) \, \mathrm{d}x$
- Describe the integrated heat content in variational terms, following Pólya:

$$-\int_{\mathcal{G}} (\Delta_{\mathcal{G}; V^{D}})^{-1} \mathbb{1}(x) \, \mathrm{d}x = \max_{u \in H_{0}^{1}(\mathcal{G}; V^{D})} \frac{\|u\|_{L^{1}}^{2}}{\|u'\|_{L^{2}}^{2}}$$

because the Euler-Lagrange equation for

$$-\Delta_{\mathcal{G};\mathsf{V}^\mathrm{D}} u = \mathbb{1}$$

is

$$\frac{1}{2} \int_{\mathcal{G}} u'(x)h'(x) \, \mathrm{d}x = \int_{\mathcal{G}} h(x) \, \mathrm{d}x, \qquad h \in H^1_0(\mathcal{G}; \mathsf{V}^\mathsf{D})$$

Mimic Nicaise' doubling trick.

Proof (lower estimate)

$$\bullet \ \ \mathsf{Use} \ \mathsf{again} \ \int_0^\infty \int_{\mathcal{G}} \int_{\mathcal{G}} p_t^{\mathcal{G}}(x,y) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}t = \max_{u \in H^1_0(\mathcal{G}; \mathsf{V}^D)} \frac{\|u\|^2_{L^1}}{\|u'\|^2_{L^2}}$$

- Consider, as a test function, the function u^* that satisfies $-u^{*''}_{e} = 1$ with Dirichlet conditions on each edge.
- Check that

$$\frac{\|u_{\rm e}^*\|_{L^1}^2}{\|u_{\rm e}^*\|_{L^2}^2} = \frac{\#\mathsf{E}^3}{12}$$

and use Jensen.

Landscape functions on metric graphs, after Filoche-Mayboroda

Theorem (M. 2024)

Let $V^{D} \neq \emptyset$. Then each eigenpair (λ, φ) of $-\Delta_{G:V^{D}}$ satisfies

$$\frac{\left|\varphi(x)\right|}{\left\|\varphi\right\|_{\infty}} \leq \inf_{\delta>0} \delta \left[\left(-\lambda_1 + \delta - \left(\left(-\Delta_{\mathcal{G}; V^{\mathrm{D}}}\right)^{-1} \mathbb{1}\right)\right](x)$$

Landscape functions on metric graphs, after Filoche-Mayboroda

Theorem (M. 2024)

Let $V^{D} \neq \emptyset$. Then each eigenpair (λ, φ) of $-\Delta_{\mathcal{G};V^{D}}$ satisfies

$$\frac{|\varphi(x)|}{\|\varphi\|_{\infty}} \leq \inf_{\delta>0} \delta \left[\left(-\lambda_1 + \delta - \left(\left(-\Delta_{\mathcal{G}; V^{\mathrm{D}}} \right)^{-1} \mathbb{1} \right) \right](x)$$

Application to the heat kernel of Laplacians $\Delta_{\mathcal{G};\mathsf{V}^\mathrm{D}}$

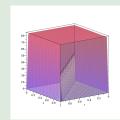
Proposition

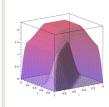
There exists C = C(G) with

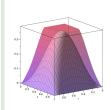
$$p_t^{\mathcal{G};\mathsf{V}^\mathrm{D}}(x,y) \leq C \left[\sum_{k \in \mathbb{N}} |\lambda_k|^2 \mathrm{e}^{-t\lambda_k} \right] (-\Delta_{\mathcal{G};\mathsf{V}^\mathrm{D}})^{-1} \mathbb{1}(x) (-\Delta_{\mathcal{G};\mathsf{V}^\mathrm{D}})^{-1} \mathbb{1}(y).$$

Example

Simplest case: $\mathcal{G}=$ interval (0,1) with Dirichlet conditions at both endpoints







Same estimates holds even for the heat kernel of the magnetic Laplacian!

Proof

ullet Consider an ONB of eigenvectors of $\Delta_{\mathcal{G};\mathsf{V}^D}$. Then

$$\varphi_k = \lambda_k (\Delta_{\alpha}^{\mathcal{G};\mathsf{V}^{\mathrm{D}}})^{-1} \varphi_k$$

and because $e^{t\Delta_{\mathcal{G};V^D}}$ is positive

$$|\varphi_k| = |(\Delta_\alpha^{\mathcal{G};\mathsf{V}^\mathsf{D}})^{-1}\varphi_k| \le |\lambda_k|(-\Delta_{\mathcal{G};\mathsf{V}^\mathsf{D}})^{-1}|\varphi_k| \le |\lambda_k|\|\varphi_k\|_{\infty}(-\Delta_{\mathcal{G};\mathsf{V}^\mathsf{D}})^{-1}\mathbb{1}.$$

- Bifulco-Kerner 2024: $\leadsto \|\varphi_k\|_{\infty} \le C(\mathcal{G})$ for some $C = C(\mathcal{G})$ and all k.
- Mercer Theorem <>→

$$\begin{split} |\rho_t^{\mathcal{G};\mathsf{V}^\mathrm{D}}(x,y)| &= \sum_{k \in \mathbb{N}} \mathrm{e}^{-t\lambda_k(\Delta_{\mathcal{G};\mathsf{V}^\mathrm{D}})} |\varphi_k(x)| \ |\varphi_k(y)| \\ &\leq C(\mathcal{G})^2 \sum_{k \in \mathbb{N}} |\lambda_k|^2 \mathrm{e}^{-t\lambda_k} (-\Delta_{\mathcal{G};\mathsf{V}^\mathrm{D}})^{-1} \mathbb{1}(x) (-\Delta_{\mathcal{G};\mathsf{V}^\mathrm{D}})^{-1} \mathbb{1}(y). \end{split}$$

Torsion function can be computed explicitly

Exercise

Let $\mathcal G$ be equilateral $(\ell_e\equiv 1)$ and let $v:=(-\Delta_{\mathcal G;V^D})^{-1}\mathbb 1$, for $V^D\neq\emptyset$. Then the restriction $g:=v_{|V|}:V\to\mathbb R$ is the unique solution of the system

$$\begin{cases} g(v) = 0, & v \in V^{\mathrm{D}}, \\ \\ \frac{1}{\deg(v)} \sum_{w \sim v} g(v) - g(w) = \frac{1}{2}, & v \in V \setminus V^{\mathrm{D}}. \end{cases}$$

References

- Kramar–Fijavž–M.–Sikolya, Variational and semigroup methods for waves and diffusion on networks, AMO 2007
- M.-Romanelli, Dynamic and generalized Wentzell node conditions for network equations, MMAS 2007
- Kennedy-Kurasov-Malenová-M., On the spectral gap of a quantum graph, Ann. Poincaré 2016
- Berkolaiko-Kennedy-Kurasov-M., Edge connectivity and the spectral gap of combinatorial and quantum graphs, J. Phys. A 2017
- Hussein-M., Laplacians with point interactions expected and unexpected spectral properties, in: Semigroups of Operators – Theory and Applications, Springer 2020.
- Glück-M., Eventual Domination for Linear Evolution Equations, Math. Z. 2021
- Hofmann-Kennedy-M.-Plümer, On Pleijel's nodal domain theorem for quantum graphs, Ann. H. Poincaré 2021
- M.-Plümer, On torsional rigidity and ground-state energy of compact quantum graphs, Calc. Var. 2023
- Bifulco-M., On the Lipschitz continuity of the heat kernel, arXiv:2307.08889
- Bifulco-M., On the heat content of compact quantum graphs, arXiv:2502.09461

Commercial #1

COST (cost.eu) just approved the Action multiscale Stochastics, Patterns, and Analysis of Combinatorial Environments (mSPACE).

- 40 applicants from 20 European countries
- Financial support for Short Term Scientific Missions
- ... and the organisation of summer schools
- ... and of conferences, workshops, minisymposia, special sessions, ...
- Participation open to new members, too...
- ...from countries in North Africa and Middle East (and Europe)
- Applications open from June 12, 2025
- Please reach out if interested!

Commercial #2

African-European Early-Career Network of Female Mathematicians in Mathematical Physics and Analysis

- Interest in taking parts in online (to begin with...) mathematical meetings with fellow female mathematicians from Africa and Europe?
- Then reach out: Anna Liza Schonlau (University of Bonn) schonlau@iam.uni-bonn.de

Thank you for your attention!